Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Activation of calmodulin by various metal cations as a function of ionic radius.

S H Chao, Y Suzuki, J R Zysk and W Y Cheung
Molecular Pharmacology July 1984, 26 (1) 75-82;
S H Chao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R Zysk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Y Cheung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The active form of calmodulin is a Ca2+ . calmodulin complex. The purpose of this investigation was to determine whether other metal cations substitute for Ca2+ to activate calmodulin. Binding of Ca2+ resulted in an altered conformation of calmodulin with an increased quantum yield in its tyrosine fluorescence. Qualitatively similar results were obtained with Zn2+, Mn2+, Cd2+, Hg2+, Sr2+, Pb2+, Tb3+, Sm3+, and La3+. The relative extents of fluorescence enhancement by these cations were related to their ionic radii: all cations with ionic radii close to Ca2+ (0.99 A) increased tyrosine fluorescence, whereas those with different ionic radii were not effective, or much less so. The change in calmodulin conformation by the cations was confirmed by its altered electrophoretic mobility on polyacrylamide gels. Cations that change the conformation of calmodulin allow it to stimulate phosphodiesterase. The relative extents of stimulation of phosphodiesterase by cations were also related to their ionic radii. Finally, the ability of metal cations to inhibit Ca2+ binding was similarly related to their ionic radii. In general, the closer the radius of a metal cation was to that of Ca2+, the more effective was the cation to substitute for Ca2+. The range of effective ionic radii was approximately 1 +/- 0.2 A. Calmodulin-stimulated phosphodiesterase activity by the cations was reversed by trifluoperazine, an antagonist of calmodulin.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 1
1 Jul 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of calmodulin by various metal cations as a function of ionic radius.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Activation of calmodulin by various metal cations as a function of ionic radius.

S H Chao, Y Suzuki, J R Zysk and W Y Cheung
Molecular Pharmacology July 1, 1984, 26 (1) 75-82;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Activation of calmodulin by various metal cations as a function of ionic radius.

S H Chao, Y Suzuki, J R Zysk and W Y Cheung
Molecular Pharmacology July 1, 1984, 26 (1) 75-82;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics