Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Evidence for a homologous nature among various mammalian species.

T A Gasiewicz and G Rucci
Molecular Pharmacology July 1984, 26 (1) 90-98;
T A Gasiewicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Rucci
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The presence and properties of the Ah receptor were examined in the guinea pig, rat, hamster, monkey, and three different strains of mice. These species and strains have demonstrated differences in sensitivity and variability of response to 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. All species examined, with the exception of DBA/2J mice, possess similar amounts of binding protein with high affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin in hepatic tissue. Numerous dibenzo-p-dioxin congeners and polycyclic aromatic hydrocarbons demonstrated a similar rank order ability to bind to receptor molecules from these species. When analyzed by gel-exclusion high-performance liquid chromatography, hepatic cytosolic receptors from all species eluted at volumes corresponding to a similar molecular weight range. Association of the hepatic Ah receptor with the nuclear fraction was observed in all cases following the i.p. treatment of guinea pig, rat, C57BL/6J mouse, or hamster with [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. In all species and tissues examined, with the exception of hamster duodenum and thymus, the highest concentrations of receptor were localized in the liver, lung, thymus, intestine, and kidney. Exceptionally high concentrations of receptors were also observed in guinea pig testes. These findings indicate that, despite species and tissue specific differences in the biochemical and toxicological responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds, a number of different mammalian species possess Ah receptors with similar properties. Thus, the correlative differences between certain strains of mice in terms of altered specific binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin and sensitivity to this compound may be unique and not necessarily applicable to other species. Although all data indicate that the receptor mediates these responses, it appears that species- and tissue-specific differences may be determined by a number of additional factors. These results also suggest the conservation of some, as yet unknown, functional role of the receptor molecule.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 1
1 Jul 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Evidence for a homologous nature among various mammalian species.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Evidence for a homologous nature among various mammalian species.

T A Gasiewicz and G Rucci
Molecular Pharmacology July 1, 1984, 26 (1) 90-98;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cytosolic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Evidence for a homologous nature among various mammalian species.

T A Gasiewicz and G Rucci
Molecular Pharmacology July 1, 1984, 26 (1) 90-98;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics