Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

[3H]Pirenzepine and [3H]quinuclidinyl benzilate binding to brain muscarinic cholinergic receptors. Differences in measured receptor density are not explained by differences in receptor isomerization.

G R Luthin and B B Wolfe
Molecular Pharmacology September 1984, 26 (2) 164-169;
G R Luthin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B B Wolfe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Muscarinic receptor densities were measured in membranes prepared from rat cerebral cortex using [3H]pirenzepine and [3H]quinuclidinyl benzilate. Isotherms of equilibrium binding data modeled to a single apparent binding site for both ligands. However, as has been reported previously, [3H]pirenzepine labeled only a small fraction of the binding sites that were labeled by [3H]quinuclidinyl benzilate. This observation has been used to support the hypothesis that subtypes of muscarinic receptors exist. Several investigators have previously suggested that antagonist binding to muscarinic receptors involves an isomerization of the receptor-antagonist complex, and it is only the isomerized form of the receptor that is identified by radioligand binding studies. To examine the possibility that the difference in the density of binding sites identified by [3H]pirenzepine and [3H]quinuclidinyl benzilate is due to differences in the degree of isomerization of the receptor associated with the binding of each ligand, the kinetics of the binding of [3H]pirenzepine and [3H]quinuclidinyl benzilate to membranes prepared from rat cerebral cortex were examined. The pseudo-first-order rate constant of association for both ligands showed a nonlinear (hyperbolic) dependence on ligand concentration. These results suggested that a rapidly equilibrating initial binding step was followed by a more slowly equilibrating isomerization of the initially formed ligand-receptor complex. The kinetic data were computer-modeled to obtain estimates of the equilibrium constants for both reaction steps. The equilibrium constants for the isomerization step were 0.1 and 0.004 for [3H]pirenzepine and [3H]quinuclidinyl benzilate, respectively. Our measurements, in agreement with others, suggested that only the fraction of receptors which isomerized were measurable using filtration binding assays. Although essentially all (99.6%) of the [3H]quinuclidinyl benzilate binding sites appeared to isomerize, only 90% of the [3H]pirenzepine binding sites isomerized, and thus only 90% were measured in our assay. It therefore appears that differences in receptor isomerization can partially, but not wholly, account for the differences between [3H]pirenzepine and [3H]quinuclidinyl benzilate binding in rat cerebral cortex.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 2
1 Sep 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
[3H]Pirenzepine and [3H]quinuclidinyl benzilate binding to brain muscarinic cholinergic receptors. Differences in measured receptor density are not explained by differences in receptor isomerization.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

[3H]Pirenzepine and [3H]quinuclidinyl benzilate binding to brain muscarinic cholinergic receptors. Differences in measured receptor density are not explained by differences in receptor isomerization.

G R Luthin and B B Wolfe
Molecular Pharmacology September 1, 1984, 26 (2) 164-169;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

[3H]Pirenzepine and [3H]quinuclidinyl benzilate binding to brain muscarinic cholinergic receptors. Differences in measured receptor density are not explained by differences in receptor isomerization.

G R Luthin and B B Wolfe
Molecular Pharmacology September 1, 1984, 26 (2) 164-169;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics