Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure.

V C Jordan and M E Lieberman
Molecular Pharmacology September 1984, 26 (2) 279-285;
V C Jordan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M E Lieberman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

An in vitro assay that depends upon the synthesis of prolactin by primary cultures of dispersed cells from immature rat pituitary cells was used to study the structural requirement for estrogen action. Two categories of estrogens were identified: full estrogens (agonists) and partial estrogens (partial agonists) with antiestrogenic actions against the effects of 0.1 nM estradiol (E2). All of the agonists [diethylstilbestrol (DES), dimethylstilbestrol (DMS), R2858, and RU16117] produced a dose-related increase in prolactin synthesis equivalent to E2, although potencies were different: E2 = DES = R2858 greater than RU16117 greater than DMS. Partial agonists [ICI 3188, tri(4-hydroxyphenyl)chloroethylene, and bisphenol] each had bis(4-hydroxyphenol) substitutions at the ethylene double bond and stimulated prolactin synthesis only to about 50% of the maximal response observed with E2. Trianisylchloroethylene was weakly active as a partial agonist, but at high concentration (10 microM) was able to decrease prolactin synthesis produced by 0.1 nM E2. Previous studies from these laboratories showed that triphenylethylene derivatives with a strategically located alkyl aminoethoxyside chain are complete E2 antagonists with no agonist activity. Two series of novel compounds were assayed to determine whether their structures would predict biological activity. LN2299, the cis geometric isomer of a triphenylbromethylene, was a full agonist with activity equivalent to zuclomiphene, the cis geometric isomer of clomiphene. Cyclofenyl was a partial agonist, but deacetylation to the diphenol increased partial agonist activity and potency. However, introduction of a single pyrrolidinoethylside chain into the deacetylated cyclofenyl increased antiestrogenic potency and completely suppressed the expression of agonist activity. Finally, LN2833, with a novel C(OH)CH3 side chain in the position normally occupied by the alkylaminoethoxyside chain of most antiestrogens, produced antiestrogen activity with no estrogen properties. Antiestrogenic potency was increased in LN2839 by a phenol in the triphenylethylene in a position equivalent to the 3-phenolic hydroxyl of E2. In general, the potency and biological properties could be predicted by reference to the structure of the molecule. Potent estrogens or antiestrogens have a phenolic hydroxyl in a position that would be equivalent to the 3-phenolic hydroxyl of E2. Partial agonist action is predicted by a 4-hydroxyphenol attached to the same carbon as the phenyl ring equivalent to the A-ring of E2.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 2
1 Sep 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure.

V C Jordan and M E Lieberman
Molecular Pharmacology September 1, 1984, 26 (2) 279-285;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Estrogen-stimulated prolactin synthesis in vitro. Classification of agonist, partial agonist, and antagonist actions based on structure.

V C Jordan and M E Lieberman
Molecular Pharmacology September 1, 1984, 26 (2) 279-285;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics