Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase.

J S Woods, D L Eaton and C B Lukens
Molecular Pharmacology September 1984, 26 (2) 336-341;
J S Woods
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D L Eaton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C B Lukens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Uroporphyrinogen (urogen) decarboxylase catalyzes the decarboxylation of 8- to 4-carboxyl porphyrinogen during heme biosynthesis in mammalian tissues. The specific activity of renal urogen decarboxylase was shown to be approximately one-third that of the hepatic enzyme and to be readily inactivated by HgCl2 following acute treatment or at concentrations as low as 50 microM in vitro. HgCl2 differentially inhibited the decarboxylation of 8- to 7- and 7- to lesser-carboxylated porphyrinogens in the kidney, suggesting that at least a two-stage process is involved in the catalytic action of the renal enzyme. In contrast, neither lead nor iron compounds inhibited renal urogen decarboxylase in concentrations as high as 1 mM in the reaction mixture. GSH increased renal but not hepatic urogen decarboxylase activity by over 4-fold in vitro when measured as total porphyrinogen products produced, and preferentially accelerated the decarboxylation of 7- to 4-carboxyl porphyrinogen. GSH also protected the renal enzyme from HgCl2 inhibition. These findings suggest that renal urogen decarboxylase catalyzes porphyrin decarboxylation significantly less rapidly than the hepatic enzyme, is readily inactivated by mercuric chloride, and may be GSH-dependent with respect to achieving optimal catalytic activity. These observations may be useful in characterizing the contribution of the kidney to the clinical manifestations of the inherited porphyrias and environmentally induced disorders of porphyrin metabolism.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 2
1 Sep 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase.

J S Woods, D L Eaton and C B Lukens
Molecular Pharmacology September 1, 1984, 26 (2) 336-341;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase.

J S Woods, D L Eaton and C B Lukens
Molecular Pharmacology September 1, 1984, 26 (2) 336-341;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics