Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat striatum.

M P Seiler and R Markstein
Molecular Pharmacology November 1984, 26 (3) 452-457;
M P Seiler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Markstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A series of phenolic hydroxy-2-aminotetralins with either a primary or a tertiary (N,N-di-n-propylated) amino group was investigated on electrically evoked acetylcholine release from striatal slices of reserpinized rats, a dopamine (DA) D2 receptor model. 7-Hydroxy-2-aminotetralin (7-OH-AT) was found to be the most active inhibitor among the primary amines, whereas 5-hydroxy-2-(N,N-dipropylamino)tetralin (5-OH-DPAT) was the most potent compound among the tertiary amines; in the 7-OH series, the activity resided in the (2R)-enantiomers, in contrast to the 5-OH series, where the (2S)-enantiomers represented the effective form. A similar structure-activity pattern was earlier found for the same series of DA agonists at the striatal DA D1 receptor. Differences between the effects of the compounds at the two DA receptor subtypes concerned the N,N-dipropyl substitution which influenced the D2 activity much more pronouncedly, and an added 6-OH group (i.e., a catechol function), which seemed to be of foremost importance at the D1 site. These results suggest two similar major binding sites for the DA receptor subtypes, but differences with respect to additional binding sites. According to this model, DA would interact with both DA receptor subtypes in the beta-rotamer conformation; however, N,N-dipropylation similarly should cause a change in preferred conformation toward the alpha-rotamer form. The potency with respect to acetylcholine release correlated with [3H] spiroperidol binding, but not with [3H]DA binding, confirming that the former binding involves the active site of the D2 receptor.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 26, Issue 3
1 Nov 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat s…
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat striatum.

M P Seiler and R Markstein
Molecular Pharmacology November 1, 1984, 26 (3) 452-457;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat striatum.

M P Seiler and R Markstein
Molecular Pharmacology November 1, 1984, 26 (3) 452-457;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics