Abstract
Calculations have been carried out of the electronic structure and molecular properties in relation to metabolic activation and carcinogenic activities of polycyclic aromatic amines (PAAs). Quantum mechanical molecular orbital method MINDO/3 is employed in the calculations mainly on anilines, extended anilines, and aminoazo and other azo compounds. The calculations, in agreement with findings of Arcos and Argus, indicate that for the highest level of carcinogenic activity obtainable with the dicyclic aromatic amines, the amino substituent must be introduced at the terminal carbon atom of the longest conjugate chain. In the case of monocyclic compounds, in particular, charge distribution of the amino substitution aids in identifying the carcinogenic character of the PAAs. Our results demonstrate that ring hydroxylation leads to detoxification of the compounds. However, the major pathway leading to carcinogenic activity involves transformation to hydroxylamines and subsequently to electrophilic arylnitrenium ions (ANIs). These are in line with findings from experiments. Calculations of certain electronic parameters give expected relative carcinogenic potencies. In all cases the ANIs function as ambient electrophiles which can undergo both electrostatic and covalent binding with nucleophilic centers of proteins and DNA bases.
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|