Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations.

M McKinney, S Stenstrom and E Richelson
Molecular Pharmacology February 1985, 27 (2) 223-235;
M McKinney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Stenstrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Richelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Murine neuroblastoma cells (clone N1E-115) possess muscarinic receptors that mediate multiple responses, including the elevation of cyclic GMP levels and the inhibition of receptor-mediated increases in cyclic AMP. Evidence is presented showing that two muscarinic agonist-receptor conformations in N1E-115 cells each separately mediate a cyclic nucleotide response. Pirenzepine inhibited the [3H]cyclic GMP response to carbachol with a KD value of approximately 6 nM, whereas it inhibited the ability of carbachol to reduce prostaglandin E1-mediated elevations in [3H]cyclic AMP levels with a KD value of 93 nM, thus differentiating between two classes of receptors involved in these responses. Ten muscarinic agonists were studied for their ability to mediate the two cyclic nucleotide responses. Six were as effective as acetylcholine in the reduction of [3H]cyclic AMP levels, but only two were as effective as acetylcholine in elevating [3H]cyclic GMP levels. Four agonists (arecoline, pilocarpine, oxotremorine, and McN-A343) were ineffective in increasing [3H]cyclic GMP levels. These four agonists and bethanecol, which could increase [3H]cyclic GMP levels only 18% as well as acetylcholine, behaved as competitive antagonists in this response to carbachol. These partial agonists, in contrast to carbachol, bound to only one class of muscarinic sites in N1E-115 cells with equilibrium dissociation constants determined by competition binding assays which agreed well with their respective EC50 values for their effect on [3H]cyclic AMP levels. The equilibrium dissociation constants for the partial agonists determined by their inhibition of carbachol in the [3H] cyclic GMP response also agreed well with their respective EC50 values for mediating the [3H]cyclic AMP response. Thus, the partial agonists bound to the same receptors at which carbachol mediated [3H]cyclic GMP formation, but with KD values about the same as their respective EC50 values for inhibition of prostaglandin E1-mediated [3H]cyclic AMP increases. The full agonists acetylcholine and methacholine, like carbachol, bound to two sites in N1E-115 cells. For the six agonists able to stimulate both responses at least to some degree, the ratio of their potencies at each response correlated with their respective efficacies at each response but with much more dependence in the [3H]cyclic GMP response.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 27, Issue 2
1 Feb 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations.

M McKinney, S Stenstrom and E Richelson
Molecular Pharmacology February 1, 1985, 27 (2) 223-235;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Muscarinic responses and binding in a murine neuroblastoma clone (N1E-115). Mediation of separate responses by high affinity and low affinity agonist-receptor conformations.

M McKinney, S Stenstrom and E Richelson
Molecular Pharmacology February 1, 1985, 27 (2) 223-235;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics