Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Trapping of reactive species by reduced glutathione and butylated hydroxyanisole.

D Ross, R Larsson, K Norbeck, R Ryhage and P Moldéus
Molecular Pharmacology February 1985, 27 (2) 277-286;
D Ross
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Larsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Norbeck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Ryhage
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Moldéus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

OFF products of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of p-phenetidine were isolated and reactive species were trapped with reduced glutathione (GSH) and butylated hydroxyanisole (BHA). When BHA was added to a reaction mixture after 5 min, subsequent TLC and mass spectrometric analysis revealed the formation of an adduct of BHA and 4-(ethoxyphenyl)-p-benzoquinone diimine (A). The diimine derivative (A) was unstable and its expected degradation products, 4-(ethoxyphenyl)-p-benzoquinone imine (B) and ammonia, were recovered from the reaction in stoichiometric amounts. Ethanol was an early product of the reaction presumably resulting from radical coupling reactions and its formation agreed with the combined production of A and B, suggesting that this was its sole route of formation. The addition of GSH to a reaction at various times and subsequent TLC and high performance liquid chromatographic analysis revealed the presence of at least seven conjugates. Two conjugates were identified by fast atom bombardment mass spectrometry, one as a mono-GSH conjugate of A and another as a mono-GSH conjugate of B. When purified [14C]B was mixed with [3H]GSH, three conjugates were isolated by high performance liquid chromatography, two of which were tentatively identified as di-GSH conjugates. The conjugates isolated existed in both oxidized and reduced forms which could be easily interconverted by redox processes. The production of such reactive species and their conjugates in vivo may be a useful indicator of peroxidase-catalyzed metabolism.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 27, Issue 2
1 Feb 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Trapping of reactive species by reduced glutathione and butylated hydroxyanisole.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Trapping of reactive species by reduced glutathione and butylated hydroxyanisole.

D Ross, R Larsson, K Norbeck, R Ryhage and P Moldéus
Molecular Pharmacology February 1, 1985, 27 (2) 277-286;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Trapping of reactive species by reduced glutathione and butylated hydroxyanisole.

D Ross, R Larsson, K Norbeck, R Ryhage and P Moldéus
Molecular Pharmacology February 1, 1985, 27 (2) 277-286;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics