Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.

J K Nicholson, J A Timbrell and P J Sadler
Molecular Pharmacology June 1985, 27 (6) 644-651;
J K Nicholson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J A Timbrell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P J Sadler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rats were injected intraperitoneally with HgCl2 at doses of 2.5, 5, 7.5, and 10 mumol of Hg/kg. Urine was collected over a 24-hr period. At this time, plasma samples were taken and kidney damage was assessed by histological examination. Urinary gamma-glutamyltransferase levels were significantly elevated at Hg2+ doses of 7.5 and 10 mumol/kg, consistent with the detection of acute tubular necrosis by light microscopy. Resonances for a large number of low molecular weight metabolites were assigned in high resolution 1H NMR spectra of rat urine. Spectra from small volumes of urine (about 0.5 ml) were obtained in less than 5 min with no pretreatment. Significant Hg2+ dose-related decreases in the excretion of creatinine and citrate and increases of glucose, glycine, alanine, alpha-ketoglutarate, succinate, and acetate were detected. Elevated levels of lactate and creatinine in plasma of rats receiving the two highest doses were found by 1H NMR. There was a good correspondence between the histopathology, enzyme excretion, and 1H NMR urinary metabolite fingerprints in the assessment of Hg2+-induced renal damage. 1H NMR provided a sensitive measure of mercury-induced nephrotoxic lesions, and information on the molecular basis of mercury cytotoxicity was derived from the abnormal patterns of metabolite excretion. These suggested that primary metabolic effects of mercury were upon mitochondrial metabolism, in particular inhibition of certain citric acid cycle enzymes leading to decreased utilization of alpha-ketoglutarate and succinate by the renal tubular cells. The decrease in urinary citrate associated with Hg2+ dosing was attributed to intracellular, tubular acidosis with concomitant enhanced citrate reabsorption. The acidosis was assumed to arise from a combination of the inhibition of tubular carbonic anhydrase and a mild metabolic lactic acidosis due to increased activity of anaerobic pathways in the kidney. The possible extension of the 1H NMR techniques to the investigation of the nephrotoxic potential of other compounds and drugs is discussed.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 27, Issue 6
1 Jun 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.

J K Nicholson, J A Timbrell and P J Sadler
Molecular Pharmacology June 1, 1985, 27 (6) 644-651;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats.

J K Nicholson, J A Timbrell and P J Sadler
Molecular Pharmacology June 1, 1985, 27 (6) 644-651;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics