Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry.

R R Neubig, R D Gantzos and R S Brasier
Molecular Pharmacology November 1985, 28 (5) 475-486;
R R Neubig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R D Gantzos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R S Brasier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The agonist- and antagonist-binding properties of the alpha 2-adrenergic receptor in a purified plasma membrane preparation from human platelets were determined both by direct binding of radiolabeled ligands and by competition with the labeled alpha 2-antagonist, [3H] yohimbine. Binding of [3H]yohimbine was characterized by a single high affinity binding site (Kd = 6.2 +/- 1.4 nM, Bmax = 507 +/- 53 fmol/mg). In direct binding studies, the imidazoline full alpha 2-agonist, [3H]-5-bromo-6-N(2-4,5-dihydroimidazolyl)quinoxaline ([3H] UK 14,304), bound to only one quantifiable high affinity site (Kd = 0.88 +/- 0.17 nM), representing 65 +/- 6% of the number of [3H]yohimbine sites. Binding of the partial agonist [3H]-p-aminoclonidine (PAC) showed nonlinear Scatchard plots. Analysis according to a model of multiple independent binding sites showed the data to be consistent with two sites (Kd1 = 0.62 +/- 0.18 nM and Kd2 = 7.9 +/- 1.4 nM). The high affinity site corresponded to 15 +/- 6% and the low affinity site corresponded to 39 +/- 6% of the number of [3H]yohimbine sites. Competition for binding of the alpha 2-antagonist, [3H]yohimbine, with nonradiolabeled ligands revealed a single affinity for yohimbine. In contrast, competition for [3H]yohimbine binding by the full agonist UK 14,304 and epinephrine is best fit by a model with two independent binding sites. The partial agonist PAC was best characterized by a model with three distinct binding sites. The full agonists UK 14,304 and epinephrine inhibited adenylate cyclase approximately 30%, whereas PAC produced only 12% inhibition. The inhibitory guanine nucleotide-binding protein (Ni) with Mr 40,700 was the sole pertussis toxin substrate in the purified membranes. It was quantitated by pertussis toxin-catalyzed [32P]ADP ribosylation in cholate extracts. There is a 20- to 100-fold excess of Ni over alpha 2-adrenergic receptors. Comparisons made between the experimental data for agonist binding and theoretical predictions of the simple ternary complex model suggest that there is compartmentalization of Ni and/or that the alpha 2 receptors are heterogeneous.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 28, Issue 5
1 Nov 1985
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry.

R R Neubig, R D Gantzos and R S Brasier
Molecular Pharmacology November 1, 1985, 28 (5) 475-486;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Agonist and antagonist binding to alpha 2-adrenergic receptors in purified membranes from human platelets. Implications of receptor-inhibitory nucleotide-binding protein stoichiometry.

R R Neubig, R D Gantzos and R S Brasier
Molecular Pharmacology November 1, 1985, 28 (5) 475-486;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics