Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells.

M Sugiyama, S R Patierno, O Cantoni and M Costa
Molecular Pharmacology June 1986, 29 (6) 606-613;
M Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S R Patierno
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O Cantoni
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Costa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Alkaline elution studies demonstrated CaCrO4-induced DNA single strand breaks and DNA-protein crosslinks. DNA single strand breaks increased following treatment with 10-400 microM CaCrO4 in Chinese hamster ovary cells maintained with a minimal salts/glucose medium. DNA single strand breaks were rapidly repaired when extracellular CaCrO4 was removed even following exposure levels of CaCrO4 (200 microM for 2 hr) which reduced survival to 0.6%. Under these exposure conditions the trypan blue exclusion was greater than 80%, whereas cell growth was inhibited by 46% within 24 hr. The DNA-protein crosslinks induced by 10 microM CaCrO4 were repaired in the absence of metal within 24 hr. In contrast, the amount of DNA-protein crosslinks measured 24 hr after a 2-hr treatment with 50, 100, and 200 microM CaCrO4 remained unchanged at the 50 microM level or increased at the two higher concentrations. Thus, at concentrations of 50 microM or greater there was no repair of the DNA protein crosslinks, and this may have been due to cytotoxicity of the metal. CaCrO4 at 10 or 25 microM exposure for 6 hr also induced DNA-protein crosslinking in Chinese hamster ovary cells maintained in normal tissue culture growth media. The lack of repair of DNA-protein crosslinks at the 25 microM level, which did not substantially reduce cell survival, indicated the persistence of these lesions in a noncytotoxic form. Uptake of CaCrO4 was linear with all of the concentrations tested. Analysis of the cell cycle sensitivity to CaCrO4 revealed that cells in early S phase were the most sensitive to the cytotoxic and strand breaking activity of CaCrO4. Compared with other phases of the cell cycle, there was also an elevated level of DNA-protein crosslinks when cells were treated in early S phase and incubated 24 hr without CaCrO4. These results implicate the DNA-protein crosslink as an important lesion that may be responsible for the cytotoxic and carcinogenic properties of chromate.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 29, Issue 6
1 Jun 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells.

M Sugiyama, S R Patierno, O Cantoni and M Costa
Molecular Pharmacology June 1, 1986, 29 (6) 606-613;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells.

M Sugiyama, S R Patierno, O Cantoni and M Costa
Molecular Pharmacology June 1, 1986, 29 (6) 606-613;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics