Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

DNA alkylation by enzyme-activated mitomycin C.

S S Pan, T Iracki and N R Bachur
Molecular Pharmacology June 1986, 29 (6) 622-628;
S S Pan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Iracki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N R Bachur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

After anaerobic reductive activation by either NADPH cytochrome P-450 reductase (EC 1.6.2.4) or xanthine oxidase (EC 1.2.3.2), mitomycin C readily alkylated DNA. When the mitomycin C-alkylated DNA is digested by DNase, snake venom phosphodiasterase, and alkaline phosphatase, only partial release of the monofunctionally linked mitomycin C nucleotide adduct occurs. Cross-linked adducts are not released into dinucleotides but resist nuclease digestion and remain in oligonucleotides and insoluble precipitates. Kinetic analyses show that the nuclease-resistant fraction which is indicative of DNA cross-linking by mitomycin C takes place quite readily. This nuclease-resistant fraction is particularly significant when the amount of total bound mitomycin C is less than 15 mumol/mmol of DNA. The cross-linked mitomycin C product accounts for more than half of the total alkylation under all pH conditions tested. Our data suggest that particular DNA sites are available for DNA cross-linking by mitomycin C, and these sites are probably the preferred and immediate alkylating targets. Furthermore, DNA cross-links by mitomycin C are not the secondary product of monofunctional adducts. Activity of both flavoenzymes is pH dependent, hence, mitomycin C activation and the rate of DNA alkylation are pH dependent. At elevated mitomycin C alkylation of DNA, the highest amount of cross-linking occurs at neutral pH. High pressure liquid chromatographic separation of the nuclease-digested DNA detected one major and two less prominent mitomycin C adducts. These were verified to be mononucleotide mitosene types by UV spectra showing maximum absorbance at 312 and 250 nm. The major adduct was purified and identified as O6-(2'-deoxyguanosyl)-2,7-diaminomitosene by NMR, indicating that the O6 position of guanine is a preferred site in DNA for at least monofunctional linkage formation.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 29, Issue 6
1 Jun 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
DNA alkylation by enzyme-activated mitomycin C.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

DNA alkylation by enzyme-activated mitomycin C.

S S Pan, T Iracki and N R Bachur
Molecular Pharmacology June 1, 1986, 29 (6) 622-628;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

DNA alkylation by enzyme-activated mitomycin C.

S S Pan, T Iracki and N R Bachur
Molecular Pharmacology June 1, 1986, 29 (6) 622-628;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics