Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Ni-coupled receptors in cultured neural hybrid cells: cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.

L Noronha-Blob, V C Lowe, W J Kinnier and D C U'Prichard
Molecular Pharmacology December 1986, 30 (6) 526-536;
L Noronha-Blob
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V C Lowe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W J Kinnier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C U'Prichard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Opiate, muscarinic, and alpha 2-adrenergic receptors and the Ni-coupled response of adenylate cyclase (AC) inhibition were examined in neuroblastoma X glioma NG108-15 (108 CC15) and neuroblastoma X Chinese hamster brain NCB-20 clonal hybrid cells, induced to differentiate with 1.0 mM dibutyryl cAMP (dBcAMP). Scatchard analysis of binding of the opiate agonist 3H-(D-Ala2,D-Leu5)enkephalin (DADLE) and the antagonist [3H] diprenorphine to dBcAMP-treated NCB-20 cell membranes indicated an 80% reduction in opiate receptor density relative to untreated cells (Bmax = 47 +/- 11 fmol/mg of protein versus 220 +/- 48 fmol/mg of protein), with no change in ligand affinities. Binding of the muscarinic cholinergic antagonist [3H]quinuclidinyl benzilate and the alpha 2-adrenergic agonist [3H]-p-aminoclonidine to dBcAMP-treated NCB-20 membranes was also reduced by 50% and 28%, respectively. In contrast, treatment of NG108-15 cells with dBcAMP did not down-regulate opiate, muscarinic, or alpha 2-adrenergic receptor sites. Opiate and alpha 2-adrenergic receptor sites were not down-regulated in the N18TG2 neuroblastoma clone, the common parent of both the hybrid cells, and the apparent source of these receptors. The C6BU-1 parent of the NG108-15 hybrid showed poor specific binding of all ligands examined. dBcAMP was very potent in inducing opiate receptor site down-regulation of NCB-20 cells, with an ED50 after 4 days treatment of 8 microM. The time course of loss of [3H]DADLE and [3H]quinuclidinyl benzilate specific binding was similar, and maximum down-regulation was achieved after 2 days. In contrast, neither higher concentrations of dBcAMP (5.0 mM) nor longer treatment times (7 days) resulted in down-regulation of receptor sites on NG108-15 cells. Coupling of opiate receptors to AC was also selectively altered in differentiated NCB-20 cells. Prostaglandin E1-stimulated AC was maximally inhibited by 1 microM DADLE in membranes from undifferentiated cells to different degrees (30% in NCB-20 and 54% in NG108-15). dBcAMP treatment had no effect on opiate inhibition of AC in NG108-15 cells but reduced by 50% the maximum opiate inhibition of AC in NCB-20 cells. These data indicate that the signal for receptor down-regulation which was triggered by dBcAMP in the NCB-20 cell comes uniquely from the Chinese hamster brain cell NCB-20 parent. The differences between NCB-20 and NG108-15 cells in the regulation of Ni-coupled receptors provides an example of dBcAMP-induced heterologous down-regulation with unique cell specificity, which is unrelated to the morphological differentiation process triggered by dBcAMP, which is common to both cells.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 30, Issue 6
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ni-coupled receptors in cultured neural hybrid cells: cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ni-coupled receptors in cultured neural hybrid cells: cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.

L Noronha-Blob, V C Lowe, W J Kinnier and D C U'Prichard
Molecular Pharmacology December 1, 1986, 30 (6) 526-536;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Ni-coupled receptors in cultured neural hybrid cells: cell specificity for dibutyryl cyclic AMP-induced down-regulation but not morphological differentiation.

L Noronha-Blob, V C Lowe, W J Kinnier and D C U'Prichard
Molecular Pharmacology December 1, 1986, 30 (6) 526-536;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics