Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole.

S M Jarvis
Molecular Pharmacology December 1986, 30 (6) 659-665;
S M Jarvis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Dipyridamole-mediated inhibition of nucleoside transport by the nitrobenzylthioinosine (NBMPR)-sensitive facilitated diffusion system in mammalian erythrocytes was investigated. [3H]Dipyridamole was a competitive inhibitor of uridine equilibrium exchange influx into guinea pig erythrocytes (apparent Ki 1 nM). Analysis of the results using total inhibitor levels instead of cell-free inhibitor concentrations increased the apparent Ki value to 7 nM. Similarly, [3H]dipyridamole inhibition of zero-trans-[14C] uridine influx was consistent with simple competitive inhibition (apparent Ki 1.4 +/- 0.7 nM). In contrast, [3H]dipyridamole behaved as a noncompetitive inhibitor of zero-trans-[14C]uridine efflux (apparent Ki 0.7 +/- 0.2 nM). In a second series of experiments, [3H]dipyridamole was found to bind to a single class of high affinity sites on plasma membranes from human erythrocytes (apparent Kd 0.65 +/- 0.07 nM) with a maximum number of binding sites similar to that determined with the nucleoside transport inhibitor NBMPR. Binding of dipyridamole to these sites was blocked by the nucleoside transport inhibitors NBMPR, nitrobenzylthioguanosine, and dilazep and in a competitive manner by adenosine and uridine (apparent inhibition constants 0.1 and 0.9 mM, respectively). These inhibition constants are similar to the apparent Km for adenosine and uridine equilibrium exchange in human erythrocytes. These results are consistent with the notion that, in mammalian erythrocytes, dipyridamole interacts with the NBMPR-sensitive transporter at the same site as NBMPR, which is preferentially located on the outer surface of the cell membrane totally or partially within the permeation site.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 30, Issue 6
1 Dec 1986
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole.

S M Jarvis
Molecular Pharmacology December 1, 1986, 30 (6) 659-665;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole.

S M Jarvis
Molecular Pharmacology December 1, 1986, 30 (6) 659-665;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics