Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis.

J Balzarini, D A Cooney, M Dalal, G J Kang, J E Cupp, E DeClercq, S Broder and D G Johns
Molecular Pharmacology December 1987, 32 (6) 798-806;
J Balzarini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D A Cooney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Dalal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G J Kang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J E Cupp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E DeClercq
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Broder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D G Johns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The antiretroviral action of 2',3'-dideoxycytidine (ddCyd) depends on its intracellular conversion to the 5'-triphosphate metabolite ddCTP. The effect of natural pyrimidines and pyrimidine nucleosides, as well as of a number of inhibitors of pyrimidine nucleotide synthesis (i.e., N-(phosphonacetyl)-L-aspartate, 6-azauridine, pyrazofurin, 3-deazauridine, and hydroxyurea) on the metabolism of the potent anti-human immunodeficiency virus drug ddCyd has been investigated in human and murine cell lines. Deoxycytidine (dCyd) and cytidine (Cyd) effectively blocked the intracellular phosphorylation of ddCyd: dCyd by competition with ddCyd for 2'-deoxycytidine kinase, and Cyd probably by competition with the higher nucleoside mono- and diphosphate kinases. These conclusions are supported by the observations that (i) the cytostatic effects of ddCyd against human Molt/4F cells are significantly reversed by dCyd; (ii) the antiviral effects of ddCyd against hman immunodeficiency virus-infected human ATH8 cells are reversed by dCyd and Cyd; (iii) phosphorylated metabolites of ddCyd could not be detected in a 2'-deoxycytidine kinase-deficient murine leukemia (L1210)/araC cell line; and (iv) ddCyd lacked any cytostatic effect against this araC-resistant L1210 cell line. In contrast to dCyd and Cyd, thymidine (dThd) stimulated formation of phosphorylated ddCyd metabolites. The degree of this stimulation proved dependent on preincubation time and dThd concentration. There was a correlation between the increased ddCTP levels upon preincubation of the cells with dThd, and decreased dCyd-5'-triphosphate pools, presumably caused by inhibition of cytidine-5' -diphosphate reductase by dThd-5'-triphosphate. In an attempt to discover compounds other than dThd that are able to stimulate ddCTP formation, a number of inhibitors of pyrimidine nucleotide metabolism were also studied. Under our experimental conditions, 3-deazauridine and hydroxyurea proved equally as effective as dThd in stimulating ddCyd phosphorylation. Finally, we could demonstrate that dThd significantly enhanced the protective effect of ddCyd against human immunodeficiency virus-infected ATH8 cells.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 32, Issue 6
1 Dec 1987
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis.

J Balzarini, D A Cooney, M Dalal, G J Kang, J E Cupp, E DeClercq, S Broder and D G Johns
Molecular Pharmacology December 1, 1987, 32 (6) 798-806;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis.

J Balzarini, D A Cooney, M Dalal, G J Kang, J E Cupp, E DeClercq, S Broder and D G Johns
Molecular Pharmacology December 1, 1987, 32 (6) 798-806;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics