Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture.

A Dumuis, M Sebben and J Bockaert
Molecular Pharmacology February 1988, 33 (2) 178-186;
A Dumuis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Sebben
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Bockaert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) inhibited the formation of cAMP promoted by vasoactive intestinal polypeptide, plus forskolin, in mouse hippocampal and cortical neurons in primary culture. The rank order of potencies of classical 5-HT1 agonists in inhibiting cAMP formation in hippocampal neurons was 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) greater than 5-carboxamidotryptamine (5-CT) greater than d-lysergic acid diethylamide greater than 5-HT greater than 5-methoxy-N,N-dimethyltryptamine (5-MeO-N,N-DMT) greater than RU 24969 greater than ipsapirone greater than bufotenine greater than buspirone [half-maximal efficacy (EC50) = 7, 18, 30, 52, 90, 102, 100, 110, and 128 nM, respectively]. All the tryptamine derivatives substituted in position 5 of the indol were potent agonists [5-HT, 5-CT, 5-MeO-N,N-DMT, 5-methoxytryptamine, and bufotenine], whereas tryptamine, N-methyltryptamine, and N,N-dimethyltryptamine were poor agonists. The most potent antagonists tested were spiperone, (+/-)-pindolol, (+/-)-cyanopindolol, WB4101, and methiothepin, the affinity of spiperone for this receptor being 22 nM. In contrast, ketanserin, a specific 5-HT2 antagonist, and 5-HT3-selective drugs (ICS 205 930 and MDL 72222) were very weak in antagonizing the 5-HT-inhibited cAMP formation. The pharmacological profiles of 5-HT receptors mediating the inhibition of cAMP formation indicate that these receptors correspond to the 5-HT1A-binding site subtypes. Experiments with the Bordetella pertussis toxin indicate that the 5-HT1A receptor mediating inhibition of cAMP production involves a pertussis toxin-sensitive GTP-binding protein. In the absence of VIP, cAMP formation could be stimulated through a 5-HT receptor, but the specific 5-HT1A agonists, 8-OH-DPAT and RU 24969 did not stimulate cAMP production. These results suggest that in mouse embryonic hippocampal neurons, the 5-HT1A receptors, which are negatively coupled to adenylate cyclase, are distinct from the receptor positively coupled to this enzyme. The pharmacological characterization of the 5-HT receptor negatively coupled to adenylate cyclase in mouse embryonic cortical neurons indicates that it differs from the 5-HT1A receptor found in hippocampal neurons. Its main differences with the 5-HT1A receptor in hippocampal neurons are as follows: 1) 8-OH-DPAT was only a poor partial agonist in cortical neurons, whereas it was the best full agonist in hippocampal neurons; and 2) metergoline and methysergide as well as the anxiolytic drugs, ipsapirone and buspirone, which were potent agonists in hippocampal neurons, were competitive antagonists in cortical neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 33, Issue 2
1 Feb 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture.

A Dumuis, M Sebben and J Bockaert
Molecular Pharmacology February 1, 1988, 33 (2) 178-186;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pharmacology of 5-hydroxytryptamine-1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture.

A Dumuis, M Sebben and J Bockaert
Molecular Pharmacology February 1, 1988, 33 (2) 178-186;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics