Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

The carbon dioxide anion radical adduct in the perfused rat liver: relationship to halocarbon-induced toxicity.

L B LaCagnin, H D Connor, R P Mason and R G Thurman
Molecular Pharmacology March 1988, 33 (3) 351-357;
L B LaCagnin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H D Connor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R P Mason
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R G Thurman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

CCl4 has been shown previously to be metabolized to the trichloromethyl radical (.CCl3) and to a novel oxygen-containing carbon dioxide anion radical (.CO2-) in the perfused rat liver and in vivo. Since the role of free radicals in CCl4-induced hepatotoxicity is unclear, these studies were designed to determine if a relationship between .CO2- formation and halocarbon-induced hepatotoxicity exists. CCl4 or bromotrichloromethane (CBrCl3) was infused into livers from control or phenobarbital-treated rats perfused with either nitrogen- or oxygen-saturated Krebs-Henseleit bicarbonate buffer. Samples of effluent perfusate and chloroform/methanol extracts of liver were analyzed by ESR spectroscopy for free radical adducts following infusion of halocarbon and the spin trap, phenyl-t-butylnitrone (PBN). Hyperfine coupling constants and 13C-isotope effects observed in the ESR spectra of organic extracts of liver demonstrated the presence of the PBN radical adduct of .CCl3 from both halocarbons. Radical adducts in aqueous extracts of liver and effluent perfusate had hyperfine coupling constants and 13C-isotope effects identical to those of PBN/.CO2- generated chemically from formate. The PBN/.CO2- radical adduct was also observed in urine following the intragastric administration of CBrCl3 and PBN. Detection of PBN/.CO2- adducts in the effluent perfusate was decreased 3- to 4-fold by DIDS (0.2 mM), an inhibitor of the plasma membrane anion transport system. The rate of formation of PBN/.CO2- was decreased 2- to 3-fold following inhibition of cytochrome P-450-dependent monooxygenases by metyrapone (0.5 mM) and was increased about 2-fold by induction of cytochrome P-450 by phenobarbital pretreatment. Toxicity of halocarbons in the perfused liver was assessed by measuring the release of lactate dehydrogenase (LDH) into the effluent perfusate in livers from phenobarbital-treated rats under conditions identical to those employed to detect radical adducts (i.e., during the infusion of CCl4 or CBrCl3 into livers perfused with either nitrogen- or oxygen-saturated perfusate). Under all conditions studied, PBN/.CO2- was detected in the effluent perfusate within 2-4 min. Metabolism of halocarbons to PBN/.CO2- was 6- to 8-fold faster during perfusion with nitrogen-saturated rather than with oxygen-saturated perfusate. Concomitantly, liver damage detected from LDH release occurred much sooner during halocarbon infusion in the presence of nitrogen-saturated rather than oxygen-saturated perfusate. A good correlation between the rate of formation of PBN/.CO2- and the time of onset of LDH release following halocarbon infusion was observed.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 33, Issue 3
1 Mar 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The carbon dioxide anion radical adduct in the perfused rat liver: relationship to halocarbon-induced toxicity.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

The carbon dioxide anion radical adduct in the perfused rat liver: relationship to halocarbon-induced toxicity.

L B LaCagnin, H D Connor, R P Mason and R G Thurman
Molecular Pharmacology March 1, 1988, 33 (3) 351-357;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

The carbon dioxide anion radical adduct in the perfused rat liver: relationship to halocarbon-induced toxicity.

L B LaCagnin, H D Connor, R P Mason and R G Thurman
Molecular Pharmacology March 1, 1988, 33 (3) 351-357;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics