Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108-15, and 7315c cell membranes.

L L Werling, P S Puttfarcken and B M Cox
Molecular Pharmacology April 1988, 33 (4) 423-431;
L L Werling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P S Puttfarcken
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B M Cox
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Multiple affinity states of opioid receptors of the mu and delta types have been identified in membranes prepared from cells which bear only one type of opioid receptor (mu receptors in 7315c cells, delta receptors in NG 108-15 cells), and in guinea pig cortical membranes where both types of receptors were present in the membrane preparations. States of mu and delta receptors which have agonist affinities too low to be identified by radiolabeled agonist have been measured indirectly by agonist competition for sites labeled by radioactive antagonist. Using analogues of guanyl nucleotides, we have examined the competition of the mu and delta agonists DAGO and DSLET against [3H]DIP or [3H]NAL binding to opioid receptors and identified several agonist affinity states. In the absence of added nucleotide, competition of DSLET for [3H]DIP binding to delta opioid receptors revealed the presence of two binding sites with differing apparent agonist affinities. Addition of GDP beta S produced a steep monophasic curve which was best fit by a one-site model. In contrast, in the presence of added GTP or GTP gamma S, two affinity states were again apparent for DSLET competition at the delta receptor. The competition curve with GTP was shifted to the right relative to that produced in the absence of added guanyl nucleotide, indicating the presence of a lower apparent affinity state than any observed under other treatment conditions. DAGO competed against [3H]DIP or [3H]NAL binding to mu receptors over a wide concentration range in the absence of added guanyl nucleotide, consistent with the occupation by this ligand of more than one agonist affinity state of the mu receptor. However, when GDP beta S was added to the incubation mixture, only a single binding site was identified. Two mu receptor affinity states were again observed in the presence of added GTP or GTP gamma S. One of these had significantly lower apparent affinity than those states detected in the absence of added nucleotide or with GDP beta S. Pertussis toxin treatment resulted in a monophasic agonist competition curve which was best fitted by a single-site model in both 7315c and NG108-15 cell membranes. Addition of 100 microM GTP did not affect the agonist Kapp or Bmax after pertussis toxin treatment, suggesting that sites labeled under these conditions were not functionally associated with a G protein. In general, the effects of guanyl nucleotides were qualitatively similar at mu and delta receptors.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 33, Issue 4
1 Apr 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108-15, and 7315c cell membranes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108-15, and 7315c cell membranes.

L L Werling, P S Puttfarcken and B M Cox
Molecular Pharmacology April 1, 1988, 33 (4) 423-431;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG108-15, and 7315c cell membranes.

L L Werling, P S Puttfarcken and B M Cox
Molecular Pharmacology April 1, 1988, 33 (4) 423-431;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics