Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450.

F P Guengerich
Molecular Pharmacology May 1988, 33 (5) 500-508;
F P Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

One of the classic examples of adverse drug interactions involves pregnancies in women using the oral contraceptive 17 alpha-ethynylestradiol who also ingest rifampicin or barbiturates or hydantoins. Previous work had demonstrated increased metabolism (2-hydroxylation) of 17 alpha-ethynylestradiol in individuals using rifampicin. In this report evidence is presented for the involvement of a specific form of human cytochrome P-450, termed P-450NF, in this phenomenon. Although purified P-450NF has only relatively low catalytic 17 alpha-ethynylestradiol 2-hydroxylase activity, antibodies raised to P-450NF specifically inhibited greater than 90% of the activity in liver microsomes which had either high or low catalytic activity. When different liver samples were compared, rates of microsomal 17 alpha-ethynylestradiol 2-hydroxylation were highly correlated with amounts of immunochemically measured P-450NF or rates of nifedipine oxidation, a characteristic activity of P-450NF. Prior incubation of human liver microsomes with NADPH and troleandomycin resulted in decreased 17 alpha-ethynylestradiol 2-hydroxylation. In addition, 17 alpha-ethynylestradiol appears to be a mechanism-based inhibitor in human liver microsomes, as shown by the loss of both spectrally detectable cytochrome P-450 and 17 alpha-ethynylestradiol 2-hydroxylase activity during incubation in the presence of NADPH. Additional experiments did not show any evidence for the involvement of a number of other human cytochrome P-450 enzymes in 17 alpha-ethynylestradiol 2-hydroxylation (i.e., P-450DB, P-450PA, P-450MP, P-450j). These results are consistent with the view that P-450NF is the major enzyme involved in 17 alpha-ethynylestradiol oxidation and that drugs and hormones which influence the expression and activity of this enzyme can influence the efficacy and side effects of this compound.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 33, Issue 5
1 May 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450.

F P Guengerich
Molecular Pharmacology May 1, 1988, 33 (5) 500-508;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Oxidation of 17 alpha-ethynylestradiol by human liver cytochrome P-450.

F P Guengerich
Molecular Pharmacology May 1, 1988, 33 (5) 500-508;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics