Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain.

C A Stratford, G L Tan, M W Hamblin and R D Ciaranello
Molecular Pharmacology October 1988, 34 (4) 527-536;
C A Stratford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G L Tan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M W Hamblin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R D Ciaranello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The sulfhydryl reagents p-chloromercuribenzoate and N-ethylmaleimide (NEM) inactivate high affinity [3H]serotonin [( 3H]5-HT) binding to bovine and rat brain membranes in a concentration-dependent manner. In both species, 15-25% of total specific high affinity [3H]5-HT binding is relatively insensitive to NEM. This study examines the NEM sensitivity of the various high affinity [3H]5-HT binding subtypes, using selective ligands, tissues, and pharmacological masks to study each subtype. Reconstitution of NEM-inactivated binding by addition of GTP-binding proteins (G proteins, Gi and Go) is also described. Agonist binding to 5-HT1A, 5-HT1B, and 5-HT1D sites in rat brain and to 5-HT1A and 5-HT1D sites in bovine brain is sensitive to NEM. Binding of [3H]dihydroergotamine and [125I]iodocyanopindolol, both of which are weak partial agonists to 5-HT1B sites is relatively insensitive to NEM. Binding of [3H]5-HT to 5-HT1C sites in rat and bovine brain and choroid plexus is relatively insensitive to NEM. In the presence of spiperone to mask binding of 5-HT2 sites, binding of antagonist [( 3H]mesulergine) to 5-HT1C sites is also insensitive to NEM. Likewise, binding of the agonist [3H]4-bromo-2,5-dimethoxyphenylisopropylamine and of the antagonist [3H]ketanserin to 5-HT2 sites is not inhibited by NEM treatment of membranes. These findings suggest that agonist binding to 5-HT1A, 5-HT1B, and 5-HT1D sites is sensitive to NEM alkylation. Binding of neither agonist nor antagonist to 5-HT1C and 5-HT2 sites is sensitive to NEM. Inability of high concentrations of a variety of ligands to protect the sensitive binding sites against NEM inactivation indicates that the critical sulfhydryl group(s) are not located in the ligand binding domain of the NEM-sensitive binding sites. When membranes are treated with NEM, displacement of [125I]iodocyanopindolol by 5-HT is no longer sensitive to 5'-guanylyl imidodiphosphate (Gpp(NH)p). Gpp(NH)p sensitivity of agonist displacement of 5-HT1B binding to NEM-treated membranes is restored by addition of purified guanine nucleotide binding proteins (Gi plus Go). In addition, NEM-inactivated binding to 5-HT1A and 5-HT1D sites can be restored by addition of Gi plus Go. These data suggest that NEM exerts its effects on 5-HT1A, 5-HT1B, and 5-HT1D binding sites by inactivating the G protein(s) associated with the 5-HT receptor subtypes.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 34, Issue 4
1 Oct 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain.

C A Stratford, G L Tan, M W Hamblin and R D Ciaranello
Molecular Pharmacology October 1, 1988, 34 (4) 527-536;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in brain.

C A Stratford, G L Tan, M W Hamblin and R D Ciaranello
Molecular Pharmacology October 1, 1988, 34 (4) 527-536;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics