Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108-15 cell membranes.

T Costa, F J Klinz, L Vachon and A Herz
Molecular Pharmacology December 1988, 34 (6) 744-754;
T Costa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F J Klinz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Vachon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Herz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Opioid receptors in intact NG 108-15 cells were irreversibly inactivated with increasing concentrations of the alkylating antagonist beta-chlornaltrexamine (CNA). The consequence of the reduction in density of opioid binding sites (quantified by saturation analysis of opioid binding in membranes) was studied at two steps of opioid receptor-mediated responses, (a) stimulation of high affinity GTPase and (b) inhibition of basal adenylate cyclase. Both agonist-mediated stimulation of GTPase and inhibition of adenylate cyclase activities were progressively reduced as the concentration of CNA in the pretreatment was increased. However, the loss of responsiveness for the two enzymes differed in two aspects. First, the diminution of GTPase responsiveness was in agreement with the loss of binding sites and took place at concentrations of CNA that were lower than those necessary to reduce responsiveness of adenylate cyclase. Second, the loss of responsiveness of GTPase occurred simply as reduction of maximal stimulation, whereas that of adenylate cyclase involved an initial reduction of apparent agonist affinity (10-fold) that was followed by a decrease in maximal effect. We next examined the loss of responsiveness of both GTPase and adenylate cyclase in membranes prepared from cells that had been exposed to increasing concentrations of pertussis toxin (PTX) to inactivate PTX-sensitive G proteins in vivo. Also in this case, the extent of reduction in responsiveness was more pronounced for GTPase than for adenylate cyclase, especially in membranes treated with high concentrations of PTX. However, the pattern of loss was identical for the two enzymes and involved a main reduction in maximal effect of the agonist that was followed only after a large degree of inactivation (greater than 60%) by a diminished apparent affinity for the agonist. Opioid receptor-mediated inhibition of cAMP accumulation in intact cells exhibits an IC50 for the agonist that is 30-10 times lower than that measured in membranes for stimulation of GTPase or inhibition of cyclase, respectively. Treatment of cells with either CNA (1 microM) or various concentrations of PTX altered the concentration-response curves for agonist-mediated inhibition of cAMP accumulation in a manner similar to that observed for adenylate cyclase in membranes, inasmuch as both maximal inhibition and apparent affinities for the agonist were decreased. However, this decrease in affinity (5-fold) was not sufficient to eliminate the discrepancy in agonist potency between membranes and intact cells.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 34, Issue 6
1 Dec 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108-15 cell membranes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108-15 cell membranes.

T Costa, F J Klinz, L Vachon and A Herz
Molecular Pharmacology December 1, 1988, 34 (6) 744-754;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Opioid receptors are coupled tightly to G proteins but loosely to adenylate cyclase in NG108-15 cell membranes.

T Costa, F J Klinz, L Vachon and A Herz
Molecular Pharmacology December 1, 1988, 34 (6) 744-754;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics