Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

The new positive inotrope sulmazole inhibits the function of guanine nucleotide regulatory proteins by affecting GTP turnover.

V Ramkumar and G L Stiles
Molecular Pharmacology December 1988, 34 (6) 761-768;
V Ramkumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G L Stiles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effect of the new cardiotonic agent sulmazole on the guanine nucleotide regulatory protein-adenylate cyclase system was studied in rat adipocyte membranes. The inotrope enhanced basal adenylate cyclase activity by 46%. This stimulation occurred only at GTP concentrations (5 microM) sufficient to activate Gi. This stimulatory effect of sulmazole was abolished after functional inactivation of Gi, either by pertussis toxin or by using 10 nM GTP in the assay mixture, suggesting an important role of an active Gi in this process. Similarly, sulmazole enhanced isoproterenol-, forskolin-, and fluoride-stimulated adenylate cyclase activity by 33, 34, and 45%, respectively. However, when these latter experiments were performed after inactivation of Gi, sulmazole actually inhibited by approximately 25% adenylate cyclase activity stimulated by 1 and 10 microM isoproterenol. Under similar treatment conditions, enhancement of forskolin- and fluoride-stimulated activity by sulmazole was abolished. Sulmazole inhibited in a dose-dependent manner pertussis toxin- and cholera toxin-catalyzed labeling of Gi and Gs, respectively, with the respective inhibition observed at 100 microM of the inotrope being 29% and 56% of control. In addition, sulmazole inhibited PGE1 and isoproterenol-stimulated [3H]GDP release from Gi and Gs to 32% and 64% of control, respectively. Finally, the inotrope completely abolished PGE1-stimulated [3H]Gpp(NH)p binding with IC50 in the low micromolar range. These findings suggest that, whereas sulmazole inhibits the functioning of Gi and (to a lesser extent) Gs at low micromolar concentrations, expression of these effects on adenylate cyclase activity requires high micromolar to low millimolar concentrations of the drug. Thus, it appears sulmazole inhibits the function of Gi by decreasing its activation process, i.e., GTP-GDP exchange. Effects on Gs are manifested (at least in terms of adenylate cyclase activity) only after inactivation of Gi.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 34, Issue 6
1 Dec 1988
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The new positive inotrope sulmazole inhibits the function of guanine nucleotide regulatory proteins by affecting GTP turnover.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

The new positive inotrope sulmazole inhibits the function of guanine nucleotide regulatory proteins by affecting GTP turnover.

V Ramkumar and G L Stiles
Molecular Pharmacology December 1, 1988, 34 (6) 761-768;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

The new positive inotrope sulmazole inhibits the function of guanine nucleotide regulatory proteins by affecting GTP turnover.

V Ramkumar and G L Stiles
Molecular Pharmacology December 1, 1988, 34 (6) 761-768;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics