Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies.

J M Zgombick, S G Beck, C D Mahle, B Craddock-Royal and S Maayani
Molecular Pharmacology April 1989, 35 (4) 484-494;
J M Zgombick
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S G Beck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C D Mahle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Craddock-Royal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Maayani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Distinct membrane receptors that elicit similar cellular responses may share elements of signal transduction. In the present study, rat hippocampal adenosine (AD) and 5-hydroxytryptamine (5-HT) receptors were chosen to test this possibility using biochemical and electrophysiological techniques. Responses elicited by the AD receptor that mediates the inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes and hyperpolarization of resting membrane potential (RMP) in rat hippocampal pyramidal cells were characterized and compared, in the same preparation, with those analogous responses elicited by the 5-HT1A receptor. A series of AD agonists including the selective AD A1 agonist (R)-phenylisopropyladenosine [(R)-PIA] inhibited forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes in a concentration-dependent manner. Cyclopentyltheophylline (CPT), a selective AD A1 antagonist, was a potent, competitive antagonist of this response with a dissociation constant (Kb) of 6 nM (Schild analysis). The rank order of agonist EC50 values and antagonist Kb values, as well as stereoselectivity, are consistent with the classification of this receptor as the AD A1 receptor. Spiperone, a potent 5-HT1A antagonist, competitively antagonized 5-HT-mediated inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes with a Kb value of 14 nM. Intracellular recording techniques revealed that AD, (R)-PIA, 5-HT, and 5-carboxyamidotryptamine (5-CT) elicited concentration-dependent hyperpolarization of RMP within the same hippocampal pyramidal cell. The maximal hyperpolarization obtained for the AD or 5-HT analogs was the same for individual pyramidal cells. CPT and spiperone antagonized the hyperpolarization by (R)-PIA and 5-CT, respectively. Saturating concentrations of spiperone failed to antagonize (R)-PIA-mediated responses and CPT did not block responses elicited by 5-HT in either the biochemical or electrophysiological preparations. The combination of saturating concentrations of 5-HT and (R)-PIA evoked nonadditive biochemical responses relative to those observed with (R)-PIA alone. Similarly, electrophysiological experiments conducted under voltage-clamp conditions demonstrated that maximally effective concentrations of AD and 5-CT exhibited nonadditive behavior. Because the amount of outward current elicited when these agonists were coperfused was significantly less than the algebraic sum of the currents evoked individually by these agents, we infer that a population of AD A1 and 5-HT1A receptors activates a common pool of guanine nucleotide-binding proteins.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 35, Issue 4
1 Apr 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies.

J M Zgombick, S G Beck, C D Mahle, B Craddock-Royal and S Maayani
Molecular Pharmacology April 1, 1989, 35 (4) 484-494;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies.

J M Zgombick, S G Beck, C D Mahle, B Craddock-Royal and S Maayani
Molecular Pharmacology April 1, 1989, 35 (4) 484-494;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics