Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.

S S Mattano, S Land, C M King and W W Weber
Molecular Pharmacology May 1989, 35 (5) 599-609;
S S Mattano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Land
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C M King
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W W Weber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

An inbred mouse model for the human N-acetylation polymorphism has been used to investigate the biochemical basis for the arylamine N-acetylation polymorphism and the relationship between the cytosolic enzymes arylamine N-acetyltransferase (NAT), arylhydroxamic acid N,O-acyltransferase, and N-hydroxyarylamine O-acetyltransferase. Biochemical studies of partially purified NAT from rapid and slow acetylator mice revealed identical molecular weights of 31,500, activation energies of 21,000 cal/mol, equivalent affinities for acetyl coenzyme A, broad pH optima, the presence of an active site sulfhydryl group, and similar behavior during purification with anion exchange, gel filtration, and hydrophobic interaction chromatography. The enzymes differed in inhibition by hydrogen peroxide and dithiobis(2-nitrobenzoic acid). These observations taken in conjunction with previous investigations indicate that the rapid and slow mouse NAT enzymes are isozymes with minimal structural differences. NATs from rapid and slow acetylator mice were purified more than 10,000-fold by the following sequence of methods: homogenization and fractional centrifugation, protamine sulfate precipitation, and chromatography on DEAE-Trisacryl M, Sephadex G-100, Amethopterin-AH-Sepharose 4B, butyl agarose, and Sephacryl S-200, with a 15-25% recovery. NAT from B6 mice was purified to greater than 95% purity, as judged by silver staining of sodium dodecyl sulfate-polyacrylamide gels. Although only NAT appeared to be subject to a genetic polymorphism as evidenced by N-acetylation activities in liver cytosol, the purified NAT protein possessed arylhydroxamic acid N,O-acyltransferase, N-hydroxyarylamine O-acetyltransferase, and NAT activities. Thus, the cytosolic N-acetyltransferase of mouse liver may catalyze N-, O-, and N,O-acetyltransfer reactions through a common acetylated intermediate of a single protein.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 35, Issue 5
1 May 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.

S S Mattano, S Land, C M King and W W Weber
Molecular Pharmacology May 1, 1989, 35 (5) 599-609;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N,O-acyltransferase and N-hydroxyarylamine O-acetyltransferase.

S S Mattano, S Land, C M King and W W Weber
Molecular Pharmacology May 1, 1989, 35 (5) 599-609;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics