Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cation and structural requirements for P site-mediated inhibition of adenylate cyclase.

R A Johnson, S M Yeung, D Stübner, M Bushfield and I Shoshani
Molecular Pharmacology May 1989, 35 (5) 681-688;
R A Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S M Yeung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Stübner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Bushfield
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Shoshani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The cation and structural requirements of the intracellular inhibitory "P" site of adenylate cyclase were investigated in human platelet membranes, bovine sperm particles, and detergent-solubilized and purified preparations from rat and bovine brain. Sensitivity of adenylate cyclase to P site-mediated inhibition was enhanced by reversible and irreversible activators of the enzyme. The most effective sensitization of the platelet and brain adenylate cyclases was observed with Mn2+ and upon proteolysis with inhibin in the presence of guanosine 5'-O-(3-thiotriphosphate). These resulted in IC50 values for (2',5'dideoxy-adenosine (2',5'-dd-Ado) and 2'-deoxy-3'-AMP of approximately 1-2 microM. The data were consistent with the ideas that P site-mediated inhibition of adenylate cyclase is dependent on divalent cation and is a function of enzyme activity. A number of nucleosides and nucleotides were synthesized and used to define structural requirements for P site-mediated inhibition of a detergent-solubilized adenylate cyclase from rat brain. The data suggest a strict requirement for an intact adenine moiety and a beta-glycosidic linkage for the ribosyl moiety. 2'-Deoxy-and especially 2',5'-dideoxy-ribosyl moieties enhanced sensitivity and a strong preference for phosphate at the 3'-position was exhibited. Substitutions at the 5'-ribose position impaired sensitivity. The order of potency and IC50 values of the more potent adenosine analogs were 2',5'-dideoxy-3'-AMP (congruent to 0.1 microM) greater than 2'-deoxy-3'-AMP (congruent to 1 microM) greater than 2',5'-dd-Ado (congruent to 3 microM) greater than 3'-AMP (congruent to 9 microM) greater than 2'-deoxy-adenosine (congruent to 15 microM) greater than adenosine (congruent to 80 microM). Large substitutions at the 3'-ribose position were tolerated, e.g., dApdN di- and dAp(dN)4 penta-nucleotides and succinyl- and p-fluoro-sulfonyl-benzoyl- moieties. The purified adenylate cyclase from bovine brain was inhibited by P site agonists with IC50 values of 34 and 45 microM for 2'-deoxy-3'-AMP and 2',5'-dd-Ado, respectively. The data imply, first, that the locus of the P site is the catalytic subunit of adenylate cyclase and, second, that the increased sensitivity observed with Mn2+ is due to an effect of the cation on the catalytic subunit. In contrast with adenylate cyclases from other mammalian tissues, the enzyme from bovine sperm exhibited only weak sensitivity to P site agonists; 2'-deoxy-3'-AMP congruent to 2',5'-dd-Ado greater than adenosine, each with IC50 values greater than 1000 microM.(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 35, Issue 5
1 May 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cation and structural requirements for P site-mediated inhibition of adenylate cyclase.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cation and structural requirements for P site-mediated inhibition of adenylate cyclase.

R A Johnson, S M Yeung, D Stübner, M Bushfield and I Shoshani
Molecular Pharmacology May 1, 1989, 35 (5) 681-688;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cation and structural requirements for P site-mediated inhibition of adenylate cyclase.

R A Johnson, S M Yeung, D Stübner, M Bushfield and I Shoshani
Molecular Pharmacology May 1, 1989, 35 (5) 681-688;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics