Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Inducible bilirubin-degrading system in the microsomal fraction of rat liver.

F De Matteis, T Trenti, A H Gibbs and J B Greig
Molecular Pharmacology June 1989, 35 (6) 831-838;
F De Matteis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Trenti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A H Gibbs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J B Greig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The hypothesis that treatment of Gunn rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates an alternative pathway of bilirubin disposal, involving an induced form of cytochrome P-450 [Proc. Natl. Acad. Sci. USA 75:682-685 (1978)], has been investigated by studying the mechanisms of bilirubin oxidation in chemical model systems and in liver microsomal systems in vitro. Hematin, copper sulfate, and the iron chelate of EDTA were all active in promoting degradation of bilirubin in the presence of hydrogen peroxide. Evidence was obtained for a microsomal bilirubin-degrading system that could be induced in the liver by treating either rats or chick embryos with TCDD, beta-naphthoflavone, or 3,4,3',4'-tetrachlorobiphenyl (3,4-TCB) in vivo. The activity of this system required NADPH and oxygen and was markedly stimulated by addition of 3,4-TCB (a planar polyhalogenated biphenyl) and much less markedly by the nonplanar analogue 2,4,2',4'-tetrachlorobiphenyl. These two biphenyls were also inhibitory towards the 7-ethoxyresorufin O-deethylase activity of the induced microsomes and here again the nonplanar analogue was markedly less active. Dose-response experiments for stimulation of bilirubin breakdown and inhibition of 7-ethoxyresorufin O-deethylase activity after addition of 3,4-TCB in vitro showed both effects to be caused by similar concentrations of the biphenyl. These results suggest that a polyhalogenated chemical may interact with TCDD-induced microsomes, inhibit their monooxygenase activity, and stimulate production of a bilirubin-degrading species.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 35, Issue 6
1 Jun 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inducible bilirubin-degrading system in the microsomal fraction of rat liver.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Inducible bilirubin-degrading system in the microsomal fraction of rat liver.

F De Matteis, T Trenti, A H Gibbs and J B Greig
Molecular Pharmacology June 1, 1989, 35 (6) 831-838;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Inducible bilirubin-degrading system in the microsomal fraction of rat liver.

F De Matteis, T Trenti, A H Gibbs and J B Greig
Molecular Pharmacology June 1, 1989, 35 (6) 831-838;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics