Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cellular pharmacology of 3'-azido-3'-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells.

J P Sommadossi, R Carlisle and Z Zhou
Molecular Pharmacology July 1989, 36 (1) 9-14;
J P Sommadossi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Carlisle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We previously demonstrated that 3'-azido-3'-deoxythymidine (AZT) inhibits growth proliferation of human bone marrow progenitor cells in vitro [Antimicrob. Agents Chemother. 31:452-454 (1987)]. The present study evaluates the effect of toxic concentrations of AZT on possible sites of toxicity in human bone marrow cells. Exposure of cells over a 6-hr period to AZT concentrations between 0.5 and 50 microM resulted in a decreased incorporation of tritiated deoxyguanosine into DNA. Unchanged AZT and its phosphorylated metabolites accumulated within cells after exposure to 10 microM [3H]AZT. 3'-Azido-3'-deoxythymidine-5'-monophosphate was the predominant metabolite, reaching a concentration of 49.2 +/- 14.1 pmol/10(6) cells after 48 hr, and a continuous increase was observed in all phosphorylated derivative levels between 2 and 48 hr of incubation. Using a highly sensitive and specific DNA polymerase assay, endogenous deoxyribonucleotide pool size(s) were analyzed for 48 hr after incubation of cells with a pharmacologically relevant concentration of 10 microM AZT. After a 6-hr exposure, 2'-deoxycytidine-5'-triphosphate and 2'-deoxythymidine-5'-triphosphate pools represented approximately 86 and 70% of the control values; levels returned to normal after 24 hr and remained subsequently unchanged. Nucleic acids of human bone marrow cells exposed for 24 hr to 10 microM [3H]AZT were purified and analyzed by cesium sulfate density gradient. No radioactivity was detected in the RNA region, whereas a significant amount was associated with the DNA region. Hydrolysis of radiolabeled DNA and subsequent analysis by high performance liquid chromatography demonstrated specific incorporation of AZT into DNA. In additional studies, the amount of AZT incorporated into DNA was correlated with the initial extracellular AZT concentration. In particular, a significant relationship (p less than 0.0001) between the level of AZT incorporated into DNA and the inhibition of clonal growth was observed at concentrations of AZT between 1 and 25 microM (IC50 and IC85 for human bone marrow cells). In summary, these studies demonstrate that AZT is incorporated into DNA of human bone marrow cells and suggest that incorporation of AZT into DNA may be one mechanism responsible for AZT-induced bone marrow toxicity. In contrast, imbalance of deoxyribonucleotide pools by AZT appears unlikely to be associated with inhibition of DNA synthesis and toxicity in human bone marrow cells.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 36, Issue 1
1 Jul 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cellular pharmacology of 3'-azido-3'-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cellular pharmacology of 3'-azido-3'-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells.

J P Sommadossi, R Carlisle and Z Zhou
Molecular Pharmacology July 1, 1989, 36 (1) 9-14;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cellular pharmacology of 3'-azido-3'-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells.

J P Sommadossi, R Carlisle and Z Zhou
Molecular Pharmacology July 1, 1989, 36 (1) 9-14;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics