Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Activation of sodium channels and inhibition of [3H]batrachotoxinin A-20-alpha-benzoate binding by an N-alkylamide neurotoxin.

J A Ottea, G T Payne, J R Bloomquist and D M Soderlund
Molecular Pharmacology August 1989, 36 (2) 280-284;
J A Ottea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G T Payne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R Bloomquist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D M Soderlund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

BTG 502 [(2E,4E)-N-(1,2-dimethyl)-propyl-6-(5-bromonaphth-2-yl)-hexa -2,4- dienamide], a synthetic analog of insecticidal amides isolated from Piper species, stimulated 22Na+ uptake into mouse brain synaptoneurosomes in the presence of saturating concentrations of Leiurus quinquestriatus venom but had no effect on sodium uptake in the absence of venom. In the presence of Leiurus venom, half-maximal stimulation was achieved at a BTG 502 concentration of 1.7 microM, whereas maximal stimulation (2.3-fold greater than nonspecific uptake) was observed at 50 microM. In the absence of other modifiers, BTG 502 inhibited batrachotoxin (BTX)-dependent sodium uptake, producing 50% inhibition at 2 microM. In the presence of Leiurus venom, BTG 502 was a partial inhibitor of BTX-dependent 22Na+ uptake, producing half-maximal inhibition at 1.5 microM. The levels of residual BTX-dependent sodium uptake and maximal BTG 502-dependent sodium uptake measured in the presence of Leiurus venom were identical. BTG 502 inhibited the specific binding of [3H]batrachotoxinin A-20-alpha-benzoate (BTX-B) to the activator recognition site (site 2) of sodium channels in these preparations, producing half-maximal inhibition at 2 microM and maximal inhibition at 30 microM. Equilibrium analysis showed that BTG 502 was an apparent competitive inhibitor of [3H]BTX-B binding, producing a concentration-dependent decrease in the affinity of sodium channels for this ligand without affecting binding capacity. Kinetic analysis demonstrated that BTG 502 slowed the rate of formation of the ligand-receptor complex but did not alter the rate of dissociation of this complex. The effects of BTG 502 on 22Na+ uptake and [3H]BTX-B binding are consistent with the action of this compound as an antagonist at the activator recognition site of the voltage-sensitive sodium channel in the absence of Leiurus venom and as a partial agonist at this site in the presence of Leiurus venom. These results suggest that the N-alkylamides represent a novel chemical class of neurotoxins that act at site 2 of the sodium channel.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 36, Issue 2
1 Aug 1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of sodium channels and inhibition of [3H]batrachotoxinin A-20-alpha-benzoate binding by an N-alkylamide neurotoxin.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Activation of sodium channels and inhibition of [3H]batrachotoxinin A-20-alpha-benzoate binding by an N-alkylamide neurotoxin.

J A Ottea, G T Payne, J R Bloomquist and D M Soderlund
Molecular Pharmacology August 1, 1989, 36 (2) 280-284;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Activation of sodium channels and inhibition of [3H]batrachotoxinin A-20-alpha-benzoate binding by an N-alkylamide neurotoxin.

J A Ottea, G T Payne, J R Bloomquist and D M Soderlund
Molecular Pharmacology August 1, 1989, 36 (2) 280-284;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics