Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations.

J R Cashman and D E Williams
Molecular Pharmacology February 1990, 37 (2) 333-339;
J R Cashman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D E Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pulmonary microsomes, highly purified pulmonary flavin-containing monooxygenase, and highly purified pulmonary cytochrome P-450IIB-4 from pregnant female rabbits catalyze the NADPH-dependent S-oxygenation of a series of 2-aryl-1,3-dithiolanes. The S-oxide is the only detectable product formed during the short time period of the enzymatic reactions. Studies on the biochemical mechanism for S-oxygenation of 2-aryl-1,3-dithiolanes suggest that this reaction is catalyzed preferentially by the flavin-containing monooxygenase, although cytochromes P-450 also contribute to S-oxygenation. This conclusion is based on the effects of a cytochrome P-450 inhibitor, aminobenzotriazole, as well as on studies of the stereoselectivity of the reaction. Although both purified rabbit pulmonary cytochrome P-450IIB-4 and purified flavin-containing monooxygenase have identical diastereoselectivity, producing the (trans)-S-oxide, these monooxygenases possess opposite S-oxygenation enantioselectivity. Pulmonary cytochrome P-450IIB-4 S-oxygenates 2-aryl-1,3-dithiolanes almost exclusively at the pro-S-sulfur atom, whereas pulmonary flavin-containing monooxygenase S-oxygenates 2-aryl-1,3-dithiolanes exclusively at the pro-R-sulfur atom. 2-Aryl-1,3-dithiolane S-oxides are S-oxygenated a second time on the S'-sulfide sulfur atom but only by rabbit lung microsomes and pulmonary flavin-containing monooxygenase and not by cytochrome P-450IIB-4. That pulmonary flavin-containing monooxygenase only catalyzes formation of (trans)- and not (cis)-2-aryl-1,3-dithiolane S-oxide formation suggests that the active site of pulmonary flavin-containing monooxygenase exerts great steric limitations on 2-aryl-1,3-dithiolane S-oxygenation.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 37, Issue 2
1 Feb 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations.

J R Cashman and D E Williams
Molecular Pharmacology February 1, 1990, 37 (2) 333-339;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Enantioselective S-oxygenation of 2-aryl-1,3-dithiolanes by rabbit lung enzyme preparations.

J R Cashman and D E Williams
Molecular Pharmacology February 1, 1990, 37 (2) 333-339;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics