Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.

A Chu, M Díaz-Muñoz, M J Hawkes, K Brush and S L Hamilton
Molecular Pharmacology May 1990, 37 (5) 735-741;
A Chu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Díaz-Muñoz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M J Hawkes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Brush
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S L Hamilton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In this paper, we study the modulation of the rabbit fast twitch skeletal muscle calcium release channel by assaying the kinetics of [3H]ryanodine binding, 45Ca2+ flux, and single-channel activity. The effects of modulators of the Ca2+ release channel (confirmed here with both flux and single-channel data) were examined for effects on [3H]ryanodine binding to terminal cisternae vesicles. We find that activators of the release channel, such as adenine nucleotides (1 mM) and caffeine (1 mM), enhance the rate of association of [3H]ryanodine, whereas inhibitors, such as Mg2+ (1 mM) and ruthenium red (100 nM), decrease the rate of association. High concentrations of either ryanodine or ruthenium red, which close the channel, slow the dissociation of [3H]ryanodine, suggesting that at these concentrations the inhibitory effects of both ryanodine and ruthenium red occur as the result of binding at a site distinct from but interacting cooperatively with the high affinity site. Our data are consistent with a model in which the high affinity ryanodine binding site is within a conformationally sensitive area of the channel, such that conditions that open the channel (ATP, caffeine, etc.) enhance the rate at which [3H]ryanodine reaches its binding site and other conditions that close the channel (the binding of ryanodine and ruthenium red to a low affinity site) slow the dissociation of [3H]ryanodine from the high affinity site. Some conditions that inhibit channel activity (high concentrations of Mg2+ and Ca2+) slow association but do not affect dissociation of bound [3H]ryanodine, suggesting a completely different state of the channel from that which is inactive in the presence of high concentrations of ryanodine or ruthenium red. In summary, the functional state of the fast twitch skeletal muscle calcium release channel can be characterized by the changes in the kinetics of [3H]ryanodine binding. Different modulators (activators/inhibitors) affect different aspects of ryanodine binding (association/dissociation).

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 37, Issue 5
1 May 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.

A Chu, M Díaz-Muñoz, M J Hawkes, K Brush and S L Hamilton
Molecular Pharmacology May 1, 1990, 37 (5) 735-741;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.

A Chu, M Díaz-Muñoz, M J Hawkes, K Brush and S L Hamilton
Molecular Pharmacology May 1, 1990, 37 (5) 735-741;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics