Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers.

C C Benz, M A Keniry, J M Ford, A J Townsend, F W Cox, S Palayoor, S A Matlin, W N Hait and K H Cowan
Molecular Pharmacology June 1990, 37 (6) 840-847;
C C Benz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Keniry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J M Ford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A J Townsend
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F W Cox
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Palayoor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Matlin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W N Hait
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K H Cowan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Racemic gossypol has been shown to have antitumor properties that may be due to its ability to uncouple tumor mitochondria or to its inhibitory effects on a variety of nonmitochondrial enzymes. We have studied the antimitochondrial and enzyme-inhibiting properties of gossypol in human carcinoma cell lines of breast (MCF-7, T47-D), ovarian (OVCAR-3) colon (HCT-8), and pancreatic (MiaPaCa) origin by comparing the effects of its purified (+)- and (-)-enantiomers. (-)-Gossypol shows up to 10-fold greater antiproliferative activity than (+)-gossypol in the cancer cell lines and in normal hematopoietic stem cells grown in vitro, with IC50 values ranging from 1.5 to 4.0 microM for the cancer cells and from 10 to 20 microM for the human marrow stem cells. As well, multidrug-resistant MCF/Adr cells appear more resistant to (-)-gossypol than their parental cell line. Electron microscopy indicates that the earliest ultrastructural change in tumor cells exposed to a cytotoxic (10 microM) concentration of (-)-gossypol is the selective destruction of their mitochondria. Consistent with this observation, 31P magnetic resonance spectroscopy detects pronounced changes in tumor cell high energy phosphate metabolism within 24 hr of (-)-gossypol treatment, manifest by 1.6- to greater than 50-fold differential reductions in the intracellular ratios of ATP/Pi, relative to (+)-gossypol-treated cell lines; the magnitude of these antimitochondrial effects correlates with the antiproliferative activity of (-)-gossypol. Northern blot RNA analyses suggest that treatment with a 5-10 microM dose of (-)-gossypol induces a transient increase in the expression of heat shock gene products, particularly hsp-70 transcripts. The mean 5-fold increase in (-)-gossypol-induced hsp-70 mRNA appears coincident with a comparable heat-stimulated increase in transcript levels, as compared with control or (+)-gossypol-treated cells. The enzyme-inhibiting properties of gossypol enantiomers were compared in cell-free assays measuring glutathione-S-transferase-alpha, -mu, and pi activities, calmodulin stimulation of cyclic nucleotide phosphodiesterase, and protein kinase C activity. Both enantiomers are near equivalent antagonists of calmodulin stimulation and protein kinase C activity, exceeding the potency of known inhibitors such as phenothiazines by as much as 50-fold. In contrast, (-)-gossypol is a 3-fold more potent inhibitor of glutathione-S-transferase-alpha and -pi isozyme activity, resulting in IC50 values of 1.6 and 7.0 microM, respectively, for these two isozymes.(ABSTRACT TRUNCATED AT 400 WORDS)

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 37, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers.

C C Benz, M A Keniry, J M Ford, A J Townsend, F W Cox, S Palayoor, S A Matlin, W N Hait and K H Cowan
Molecular Pharmacology June 1, 1990, 37 (6) 840-847;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers.

C C Benz, M A Keniry, J M Ford, A J Townsend, F W Cox, S Palayoor, S A Matlin, W N Hait and K H Cowan
Molecular Pharmacology June 1, 1990, 37 (6) 840-847;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics