Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3).

S A Wrighton, W R Brian, M A Sari, M Iwasaki, F P Guengerich, J L Raucy, D T Molowa and M Vandenbranden
Molecular Pharmacology August 1990, 38 (2) 207-213;
S A Wrighton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W R Brian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Sari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Iwasaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F P Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J L Raucy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D T Molowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Vandenbranden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The human P450III family has been shown to be composed of at least four members, P450IIIA3 (HLp), P450IIIA4 (P450NF), P450IIIA5 (HLp3), and P450IIIA6 (HLp2). Due to the lack of probes that specifically recognize the individual members of this family, little is known about their relative expression. We prepared a form-specific antibody to P450IIIA5 by immunoabsorption of anti-P450IIIA5 IgG against Sepharose 4B upon which microsomes that did not contain P450IIIA5 or purified P450IIIA3 had been bound. Immunoblot analyses demonstrated that P450IIIA5 was expressed at detectable levels in only 19 of 66 (29%) human livers. The expression of P450IIIA5 was not influenced by the gender or medical history of the patients. When the expression of P450IIIA5 in different age groups was examined, it was observed that P450IIIA5 was detected in a statistically significantly higher percentage of children and adolescents (19 years old and under), as compared with the remaining population (8 of 17, 47%, versus 11 of 46, 24%, respectively). Furthermore, P450IIIA5 was detected in 1 of 10 human fetal livers. Of the large number of compounds identified as substrates of P450III family members, P450IIIA5 was found to actively metabolize nifedipine, testosterone, estradiol, dehydroepiandrosterone 3-sulfate, and cortisol, whereas it metabolized poorly or did not metabolize erythromycin, quinidine, 17 alpha-ethynylestradiol, and aflatoxins. The acetylenic steroid gestodene was found to be an effective mechanism-based inhibitor of both P450IIIA4 and P450IIIA5. Immunoblots of microsomes isolated from untreated and dexamethasone-, phenobarbital-, or 3-methylcholanthrene-treated HepG2 cells that were developed with an antibody that recognizes all the P450III family members demonstrated that no proteins in the P450III family were expressed by the HepG2 cells. In conclusion, our studies indicate that P450IIIA5 is polymorphically expressed at all stages of human development and is more limited in its metabolic capabilities than is P450IIIA4.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 38, Issue 2
1 Aug 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3).
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3).

S A Wrighton, W R Brian, M A Sari, M Iwasaki, F P Guengerich, J L Raucy, D T Molowa and M Vandenbranden
Molecular Pharmacology August 1, 1990, 38 (2) 207-213;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3).

S A Wrighton, W R Brian, M A Sari, M Iwasaki, F P Guengerich, J L Raucy, D T Molowa and M Vandenbranden
Molecular Pharmacology August 1, 1990, 38 (2) 207-213;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics