Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma X glioma NG108-15 cells.

M D Campbell, S Subramaniam, M I Kotlikoff, J R Williamson and S J Fluharty
Molecular Pharmacology August 1990, 38 (2) 282-288;
M D Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Subramaniam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M I Kotlikoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J R Williamson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S J Fluharty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the neuroblastoma X glioma hybrid cell line NG108-15, bradykinin (BK) receptor stimulation induced a rapid and concentration-dependent rise in cytosolic free Ca2+ levels, as measured with the Ca2(+)-sensitive fluorescent dye fura-2. The Ca2+ transient was present in the absence of extracellular Ca2+ and was associated with a concentration-dependent production of inositol phosphates, particularly inositol trisphosphate (InsP3). Pretreatment of intact NG108-15 cells with forskolin or dibutyryl-cAMP plus isobutylmethylxanthine reduced BK-stimulated InsP3 production and the increase in cytosolic free Ca2+. Membranes prepared from forskolin- and [3H]inositol-pretreated NG108-15 cells also showed a diminished production of InsP3 elicited by guanosine 5'-[gamma-thio]triphosphate, NaF, or BK plus GTP. On the other hand, the Ca2+ sensitivity of membrane-associated phosphoinositide-specific phospholipase C (PI-PLC) was unaffected by forskolin pretreatment of intact NG108-15 cells. Collectively, these results suggest that A-kinase may inhibit receptor-mediated and postreceptor stimulation of PI-PLC in neuron-like cells, perhaps by impairing the coupling between a guanine nucleotide-binding protein and PI-PLC.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 38, Issue 2
1 Aug 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma X glioma NG108-15 cells.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma X glioma NG108-15 cells.

M D Campbell, S Subramaniam, M I Kotlikoff, J R Williamson and S J Fluharty
Molecular Pharmacology August 1, 1990, 38 (2) 282-288;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Cyclic AMP inhibits inositol polyphosphate production and calcium mobilization in neuroblastoma X glioma NG108-15 cells.

M D Campbell, S Subramaniam, M I Kotlikoff, J R Williamson and S J Fluharty
Molecular Pharmacology August 1, 1990, 38 (2) 282-288;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics