Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Structure-activity relationships for enhancement of adenosine A1 receptor binding by 2-amino-3-benzoylthiophenes.

R F Bruns, J H Fergus, L L Coughenour, G G Courtland, T A Pugsley, J H Dodd and F J Tinney
Molecular Pharmacology December 1990, 38 (6) 950-958;
R F Bruns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J H Fergus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L L Coughenour
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G G Courtland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T A Pugsley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J H Dodd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F J Tinney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The structural requirements for stimulation of adenosine A1 agonist binding by 2-amino-3-benzoylthiophenes and related compounds were investigated. Slowing of the dissociation of [3H]N6cyclohexyladenosine binding was used as a specific measure of the allosteric effects of these compounds. The thiophene ring could be replaced with benzene but not with several nitrogen-containing heterocycles. The 2-amino group was required, and at least one hydrogen on the amino group appeared to be necessary for activity. The keto carbonyl was also essential. Alkyl substitution at the 4-position of the thiophene ring increased activity, whereas 5-position substitution appeared to have little effect. Activity was also increased by various substitutions on the phenyl ring, with 3-(trifluoromethyl) showing optimal activity. The phenyl ring could be replaced with cyclohexyl without major loss of activity. 1-Aminofluoren-9-one, a conformationally locked derivative, was active. Based in part in the latter observation, the active conformation is proposed to have an intramolecular hydrogen bond between the amino nitrogen and the carbonyl oxygen. Because the 2-amino-3-benzoylthiophenes showed competitive adenosine antagonism as well as allosteric enhancement, their affinities as competitive inhibitors of [3H]8-cyclopentyl-1,3-dipropylxanthine binding to A1 receptors were also assessed. Structure-activity relationships for competitive antagonism were distinct from those for allosteric enhancement, with ratios between the two activities varying by more than 1000-fold. Of the analogs tested, (2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)phenyl]methanone (PD 81,723) had the most favorable ratio of enhancement to antagonism.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 38, Issue 6
1 Dec 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structure-activity relationships for enhancement of adenosine A1 receptor binding by 2-amino-3-benzoylthiophenes.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Structure-activity relationships for enhancement of adenosine A1 receptor binding by 2-amino-3-benzoylthiophenes.

R F Bruns, J H Fergus, L L Coughenour, G G Courtland, T A Pugsley, J H Dodd and F J Tinney
Molecular Pharmacology December 1, 1990, 38 (6) 950-958;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Structure-activity relationships for enhancement of adenosine A1 receptor binding by 2-amino-3-benzoylthiophenes.

R F Bruns, J H Fergus, L L Coughenour, G G Courtland, T A Pugsley, J H Dodd and F J Tinney
Molecular Pharmacology December 1, 1990, 38 (6) 950-958;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics