Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Mutations of the human beta 2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration.

P T Campbell, M Hnatowich, B F O'Dowd, M G Caron, R J Lefkowitz and W P Hausdorff
Molecular Pharmacology February 1991, 39 (2) 192-198;
P T Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Hnatowich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B F O'Dowd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M G Caron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R J Lefkowitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W P Hausdorff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The integrity of coupling of the beta 2-adrenergic receptor (beta 2AR) to its guanine nucleotide-binding protein, Gs, and phosphorylation events on the receptor molecule have been proposed to be important determinants in the processes of receptor sequestration and down-regulation. However, little is known about the molecular mechanisms underlying these processes, and the regions of the receptor molecule that specifically subserve sequestration and down-regulation have yet to be delineated. To address these questions, we stably transfected eight mutant beta 2AR genes into Chinese hamster fibroblasts and evaluated the coupling, sequestration, and down-regulation properties of the mutated receptors. These mutant receptors have been previously demonstrated either to exhibit abnormal coupling to Gs or to lack functionally important phosphorylation sites for either the cAMP-dependent protein kinase or the agonist-dependent beta-adrenergic receptor kinase. All eight mutants exhibited receptor sequestration equivalent in extent to that of the beta 2AR, regardless of their coupling or phosphorylation status. However, four mutants that exhibited various degrees of impairment in coupling to Gs showed blunted receptor down-regulation patterns. Simultaneous treatment with isoproterenol and dibutyryl-cAMP did not improve the abilities of the mutant receptors to undergo down-regulation. These findings demonstrate that a variety of mutant beta 2AR with impaired coupling to Gs are, nevertheless, able to be sequestered normally. In contrast, agonist-induced down-regulation appears to require coupling of the beta 2AR to Gs but is largely independent of the generation of cAMP. Our results also suggest that molecular determinants of the beta 2AR involved in receptor sequestration are distinct from those participating in the down-regulation process.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 39, Issue 2
1 Feb 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutations of the human beta 2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Mutations of the human beta 2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration.

P T Campbell, M Hnatowich, B F O'Dowd, M G Caron, R J Lefkowitz and W P Hausdorff
Molecular Pharmacology February 1, 1991, 39 (2) 192-198;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Mutations of the human beta 2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration.

P T Campbell, M Hnatowich, B F O'Dowd, M G Caron, R J Lefkowitz and W P Hausdorff
Molecular Pharmacology February 1, 1991, 39 (2) 192-198;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics