Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Thymopoietin, a potent antagonist at nicotinic receptors in C2 muscle cell cultures.

M Quik, H el-Bizri, T Audhya and G Goldstein
Molecular Pharmacology March 1991, 39 (3) 324-331;
M Quik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H el-Bizri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Audhya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Goldstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent work has shown that thymopoietin, a polypeptide with actions in the immune and nervous systems, potently binds to the alpha-bungarotoxin (alpha-BGT) receptor. The present study was done to characterize the interaction of thymopoietin at the nicotinic alpha-BGT binding site in cultured muscle cells and to correlate these findings with the effects of the polypeptide on nicotinic receptor-mediated function. Inhibition studies showed that thymopoietin potently inhibited 125I-alpha-BGT binding in C2 muscle cells in culture, with an IC50 of 1.1 nM, a value similar to that for alpha-BGT. Thymopoietin bound to the alpha-BGT receptor in the cells in culture relatively slowly; at 10(-8) M thymopoietin, maximal inhibition occurred after 45 to 75 min of exposure to the polypeptide. Dissociation of thymopoietin from the receptor exhibited a much longer time course; recovery of alpha-BGT binding to control values after exposure to 10(-8) M thymopoietin occurred approximately 16 hr after removal of the polypeptide. The effects of thymopoietin on 125I-alpha-BGT binding correlated well with those on nicotinic function. Thymopoietin potently inhibited nicotinic receptor-mediated 22Na uptake in muscle cells in culture, with an IC50 of 2 nM. This effect was dependent on the length of the preincubation period with thymopoietin, with maximal inhibition occurring after 60 min of exposure to the polypeptide. Recovery of the functional response after thymopoietin (10(-8) M) exposure required about 16 hr. The mode of inhibition of receptor-mediated ion flux by thymopoietin was similar to that observed with alpha-BGT but distinct from that obtained with d-tubocurarine and gallamine. To conclude, thymopoietin, a thymic polypeptide associated with the immune system, potently inhibited both 125I-alpha-BGT binding and nicotinic receptor-mediated function in C2 muscle cells. These findings may have implications for myasthenia gravis and/or other neuromuscular disorders.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 39, Issue 3
1 Mar 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Thymopoietin, a potent antagonist at nicotinic receptors in C2 muscle cell cultures.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Thymopoietin, a potent antagonist at nicotinic receptors in C2 muscle cell cultures.

M Quik, H el-Bizri, T Audhya and G Goldstein
Molecular Pharmacology March 1, 1991, 39 (3) 324-331;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Thymopoietin, a potent antagonist at nicotinic receptors in C2 muscle cell cultures.

M Quik, H el-Bizri, T Audhya and G Goldstein
Molecular Pharmacology March 1, 1991, 39 (3) 324-331;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics