Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

C S Murphy, C J Parker, R McCague and V C Jordan
Molecular Pharmacology March 1991, 39 (3) 421-428;
C S Murphy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Parker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R McCague
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V C Jordan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The antiestrogen tamoxifen [(Z)-1(p-beta-dimethylaminoethoxy-phenyl)-1,2-diphenylbut-1-ene] is an effective anticancer agent against estrogen receptor (ER)-positive breast cancer. The alkylaminoethane side chain is essential for antiestrogenic activity, but the potency of the antiestrogen can be increased by para hydroxylation of the phenyl ring on carbon 1 of but-1-ene. This compound, 4-hydroxytamoxifen, is a metabolite of tamoxifen and has a very high binding affinity for ER [J. Endocrinol. 75:305-316 (1977)] because the hydroxyl is located in the equivalent position as the 3-phenolic hydroxyl of 17 beta-estradiol. In this study, we have examined the relationship between the relative positions of the hydroxyl and the alkyl-aminoethane side chain and the pharmacological activity of the ligand. A fixed seven-membered ring derivative of the triphenylethylene was used to prevent isomerization. All compounds were tested, with and without 17 beta-estradiol, for their effects on the growth of estrogen-responsive T47D and MCF-7 human breast cancer cells in vitro. The growth of MDA-MB-231 ER-negative breast cancer cells was not affected by any of the compounds tested, at a concentration (1 microM) that had a profound estrogenic or antiestrogenic action in ER-positive cell lines. The relative binding affinity of the compounds was determined using rat uterine ER and was found to be consistent with the observed potencies in vitro. The compounds found to be antiestrogens in vitro were antiestrogenic against estradiol (0.08 micrograms daily) in the 3-day immature rat uterine weight test. All compounds were partial agonists in vivo. In general, the estrogenic and antiestrogenic results obtained in vivo were consistent with the potency estimates obtained with the breast cancer cells in vitro. The results of this extensive structure-activity relationship study demonstrate that the substitution for 4-hydroxytamoxifen appears to be optimal to produce a potent antiestrogen; all other substitutions produced either estrogenic compounds or less potent antiestrogens. The hydroxyl group appears to be critical to locate the alkyl aminoethoxy side chain in the correct position in the steroid-binding site to block estrogen action. Novel antiestrogens were identified that could have been predicted based upon earlier drug-receptor models for the ER.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 39, Issue 3
1 Mar 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

C S Murphy, C J Parker, R McCague and V C Jordan
Molecular Pharmacology March 1, 1991, 39 (3) 421-428;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Structure-activity relationships of nonisomerizable derivatives of tamoxifen: importance of hydroxyl group and side chain positioning for biological activity.

C S Murphy, C J Parker, R McCague and V C Jordan
Molecular Pharmacology March 1, 1991, 39 (3) 421-428;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics