Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Regulation of dopamine D2 receptors by sodium and pH.

K A Neve
Molecular Pharmacology April 1991, 39 (4) 570-578;
K A Neve
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The role of Na+ and H+ in the regulation of D2 receptor affinity for ligands was studied to determine the molecular mechanisms of this phenomenon. The potency of substituted benzamide derivatives and agonists at D2 receptors depended on the concentration of Na+ and H+, whereas the potency of other antagonists was relatively unaltered by changes in pH or Na+ concentration. The potency of agonists was generally decreased in the presence of NaCl or lowered pH. For example, in the absence of sodium the affinity of D2 receptors for dopamine was decreased 17-fold by lowering of the pH from 8.0 to pH 6.8. Addition of NaCl caused 2-4-fold decreases in affinity for most agonists. The affinity of the receptors for two substituted benzamide derivatives, on the other hand, was reduced 6-44-fold by elevated concentrations of H+ but was enhanced 7-24-fold in the presence of Na+. The regulation by H+ of the potency of dopamine was selective for D2 receptors, because binding of dopamine to neostriatal D1 receptors was unaffected by changes in pH. Decreasing of the pH from 8.0 or 7.3 to 6.8 facilitated the dissociation of the substituted benzamide ligand [125I]epidepride from D2 receptors but inhibited dissociation of [3H]spiperone. Furthermore, the presence of NaCl or lowered pH slowed inactivation of D2 receptors by N-ethylmaleimide. Together, these data suggest that the conformation of D2 receptors is regulated by both Na+ and H+. The affinity of D2 receptors for agonists and substituted benzamide antagonists varies according to the conformational state of the receptors, whereas other antagonists bind to both forms with approximately equal potency. Amiloride is a compound that interacts with many sodium-binding macromolecules. At equilibrium, amiloride inhibited the binding of [3H]spiperone and [125I]epidepride in a manner suggesting a more complex interaction than simple competitive inhibition. The rate of dissociation of both radioligands was enhanced by amiloride, as would be expected for allosteric inhibition of binding. The sensitivity of D2 receptors to pH, sodium, and amiloride may be a reflection of the ability of D2 receptors to modulate Na+/H+ exchange.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 39, Issue 4
1 Apr 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of dopamine D2 receptors by sodium and pH.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Regulation of dopamine D2 receptors by sodium and pH.

K A Neve
Molecular Pharmacology April 1, 1991, 39 (4) 570-578;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Regulation of dopamine D2 receptors by sodium and pH.

K A Neve
Molecular Pharmacology April 1, 1991, 39 (4) 570-578;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics