Abstract
Although many different types of compounds have been tested for 5-hydroxytryptamine1A (5-HT1A) binding affinity, much remains to be learned about the structural requirements associated with 5-HT1A agonism, partial agonism, and antagonism. The present study uses the forskolin-stimulated adenylate cyclase (FSC) assay as a functional screen in rat hippocampal membranes to examine structure-activity relationships for a series of enantiomers of novel analogs of the prototypic 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The findings illustrate that there can be large enantiomeric differences in intrinsic activity at the 5-HT1A receptor, independent of enantiomeric effects on binding affinity. Generally, for each enantiomeric pair exhibiting stereoselective 5-HT1A binding, the enantiomer with the higher affinity also displayed the greater amount of 5-HT1A intrinsic activity in the FSC assay. Interestingly, the enantiomers of 8-OH-DPAT itself displayed stereoselective differences in intrinsic activity but not 5-HT1A affinity. Several of the compounds, namely (S)-UH-301, (2R,3R)-CM-12, and (1S,2R)-LEA-146, may have potential as prototypes for selective 5-HT1A antagonists, and (S)-UH-301 itself may be useful as a selective 5-HT1A antagonist. The FSC data presented here are in good agreement with reported measures of in vivo 5-HT1A activity, which were in part the basis of a recently proposed model for the 5-HT1A pharmacophore [J. Med. Chem. 34: 497-510 (1991)].
MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|