Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism.

H K Kroemer, C Fischer, C O Meese and M Eichelbaum
Molecular Pharmacology July 1991, 40 (1) 135-142;
H K Kroemer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Fischer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C O Meese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Eichelbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many drugs are used as racemates, and the enantiomers may differ in terms of pharmacological properties and disposition. Stereoselective disposition of the enantiomers can arise from metabolism of the enantiomers via different routes catalyzed by different enzymes. In contrast, the enantiomers may be metabolized by the same enzyme at different rates. In the latter case, the enantiomers can compete for this metabolic step, giving rise to the possibility of an enantiomer/enantiomer interaction. We have chosen the antiarrhythmic propafenone, for which in vivo data indicated an interaction between (S)- and (R)-propafenone, as a model substance to study the mechanism underlying that interaction in human liver microsomes. We used the cytochrome P450IID6-mediated 5-hydroxylation of propafenone as a model pathway, because this metabolic step constitutes the major route of biotransformation of propafenone. The Michaelis-Menten kinetics for 5-hydroxylation were determined after incubation of (R)- and (S)-propafenone and a pseudoracemate consisting of (S)-[2H4]propafenone and (R)-propafenone. Inhibition experiments were performed using (S)-[2H4]propafenone as an inhibitor of the 5-hydroxylation of (R)-propafenone, and vice versa. The kinetic model of mixed alternative substrates was used to simulate inhibition experiments. Experimental data were compared with those predicted by this model. We observed a substantial stereoselectivity after incubation of the individual enantiomers [(S)-propafenone: Vmax, 10.2 pmol/micrograms/hr, and Km, 5.3 microM; (R)-propafenone: Vmax, 5.5 pmol/micrograms/hr, and Km, 3.0 microM]. In contrast, no substrate stereoselectivity was observed after incubation of the pseudoracemate [3.1 pmol/micrograms/hr for (S)-[2H4]propafenone and 3.3 pmol/micrograms/hr for (R)-propafenone]. Application of the model revealed Ki values of 2.9 and 5.2 microM for the inhibition of 5-hydroxylation of (S)-[2H4]-propafenone by (R)-propafenone and for inhibition of 5-hydroxylation of (R)-propafenone by (S)-[2H4]-propafenone, respectively. The predicted and the experimental data were in good agreement, and both indicated the mode of inhibition to be competitive. In conclusion, the enantiomers of propafenone interact with respect to 5-hydroxylation, with (R)-propafenone being a more potent inhibitor than the S-enantiomer with respect to cytochrome P450IID6-mediated 5-hydroxylation. Because beta-blocking properties of propafenone reside in the S-enantiomer, inhibition of metabolism of this enantiomer by (R)-propafenone may have therapeutic consequences.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 1
1 Jul 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism.

H K Kroemer, C Fischer, C O Meese and M Eichelbaum
Molecular Pharmacology July 1, 1991, 40 (1) 135-142;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism.

H K Kroemer, C Fischer, C O Meese and M Eichelbaum
Molecular Pharmacology July 1, 1991, 40 (1) 135-142;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics