Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity.

G L Forrest, S Akman, J Doroshow, H Rivera and W D Kaplan
Molecular Pharmacology October 1991, 40 (4) 502-507;
G L Forrest
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Akman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Doroshow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Rivera
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W D Kaplan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Carbonyl reductase (NADPH: secondary-alcohol oxidoreductase; EC 1.1.1.184), a widely distributed NADPH-dependent enzyme considered as both an aldo-keto reductase and a quinone reductase, was cloned from a human liver genomic library and transiently expressed in COS7 cells. The gene contains 3142 bases comprising three exons and two introns. The absence of a CAAT and TATA box and the presence of a GC-rich island are characteristic of many "housekeeping" genes. Transient expression of the genomic gene in COS7 cells using an expression vector containing an SV40 origin of replication resulted in a greater than 50-fold increase in both menadione reductase activity and daunorubicin reductase activity, suggesting that both activities are derived from the same enzyme. Carbonyl reductase mRNA levels reflected enzyme activity levels in the transfected cells. Other parameters, such as pH profile, cofactor requirements, substrates, and inhibitors, were similar to those of carbonyl reductase purified by other investigators. Potential regulatory elements with consensus sequences for two GC boxes and the transcriptional activator protein AP-2 were present upstream of the transcriptional start site. Although the precise role of carbonyl reductase is unknown, the enzyme is involved in drug metabolism and in the reduction of activated carbonyl compounds. Its ability to act as a quinone reductase also implies a potential to modulate oxygen free radicals.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 4
1 Oct 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity.

G L Forrest, S Akman, J Doroshow, H Rivera and W D Kaplan
Molecular Pharmacology October 1, 1991, 40 (4) 502-507;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Genomic sequence and expression of a cloned human carbonyl reductase gene with daunorubicin reductase activity.

G L Forrest, S Akman, J Doroshow, H Rivera and W D Kaplan
Molecular Pharmacology October 1, 1991, 40 (4) 502-507;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics