Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs.

D S Ragsdale, T Scheuer and W A Catterall
Molecular Pharmacology November 1991, 40 (5) 756-765;
D S Ragsdale
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Scheuer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W A Catterall
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study examined the actions of phenytoin, carbamazepine, lidocaine, and verapamil on rat brain type IIA Na+ channels functionally expressed in mammalian cells, using the whole-cell voltage-clamp recording technique. The drugs blocked Na+ currents in both a tonic and use-dependent manner. Tonic block was more pronounced at depolarized holding potentials and reduced at hyperpolarized membrane potentials, reflecting an overall negative shift in the relationship between membrane potential and steady state inactivation. Dose-response relationships with phenytoin supported the hypothesis that the voltage dependence of tonic block resulted from the higher affinity of the drugs for inactivated than for resting channels. At -62 mV, approximately 50% of the Na+ channels were blocked by phenytoin at 13 microM, compared with therapeutic brain levels of 4-8 microM. The use-dependent component of block developed progressively during a 2-Hz train of 40-msec-long stimulus pulses from -85 mV to 0 mV. At 2 Hz, verapamil was the most potent use-dependent blocker, lidocaine and phenytoin had intermediate potencies, and carbamazepine was least effective. The use-dependent block resulted from drug binding to open and inactivated channels during the depolarizing pulses and the slow repriming of drug-bound channels during the interpulse intervals. Verapamil, lidocaine, and phenytoin all bound preferentially to open channels, but this open channel block was most striking for verapamil. Use-dependent block was less pronounced at hyperpolarized membrane potentials, due to more rapid repriming of drug-bound channels. The results indicate that type IIA Na+ channels expressed in a mammalian cell line retain the complex pharmacological properties characteristic of native Na+ channels. These channels are likely to be an important site of the anticonvulsant action of phenytoin and carbamazepine. Lidocaine and verapamil, drugs with well characterized effects on peripheral Na+ and Ca2+ channels, are also effective blockers of these brain Na+ channels.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 5
1 Nov 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs.

D S Ragsdale, T Scheuer and W A Catterall
Molecular Pharmacology November 1, 1991, 40 (5) 756-765;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs.

D S Ragsdale, T Scheuer and W A Catterall
Molecular Pharmacology November 1, 1991, 40 (5) 756-765;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics