Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin.

D C Eberhart, B Gemzik, M R Halvorson and A Parkinson
Molecular Pharmacology November 1991, 40 (5) 859-867;
D C Eberhart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B Gemzik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M R Halvorson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Parkinson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In rats, cytochrome P450 (P450) IIIA enzymes are an important determinant of digitoxin toxicity. Induction of these liver microsomal enzymes decreases the toxicity of digitoxin by increasing its oxidative cleavage to digitoxigenin bis- and monodigitoxoside (dt2 and dt1). The present study shows that the susceptibility of different mammalian species to digitoxin toxicity is inversely related to liver microsomal P450 IIIA activity (measured as testosterone 6 beta-hydroxylase activity). Based on this correlation, we correctly predicted that hamsters, which have the highest P450 IIIA activity, are extremely resistant to digitoxin toxicity. To further examine the relationship between digitoxin toxicity and P450 IIIA activity, the pathways of digitoxin metabolism catalyzed by liver microsomes from nine mammalian species were examined by high performance liquid chromatography. The overall rate of digitoxin metabolism varied approximately 90-fold and followed the rank order: hamster greater than rat greater than guinea pig greater than dog greater than mouse approximately monkey greater than rabbit approximately cat greater than human. The qualitative differences in digitoxin metabolism were as striking as the quantitative differences. Formation of 16- and/or 17-hydroxydigitoxin was the major pathway of digitoxin oxidation catalyzed by liver microsomes from hamster, guinea pig, rabbit, cat, dog, and cynomolgus monkey. Guinea pig and, to a lesser extent, hamster liver microsomes also converted digitoxin to an unknown metabolite, the formation of which was catalyzed by P450. None of the species examined catalyzed the 12-hydroxylation of digitoxin to digoxin at a high rate. Similarly, none of the species examined catalyzed a high rate of conversion of digitoxin to dt2, with the notable exception of the rat. However, dt2 formation was the major pathway of digitoxin metabolism catalyzed by human liver microsomes, although humans were much less active (approximately 2%) than rats in this regard. The rate of dt2 formation varied approximately 41-fold among 22 samples of human liver microsomes, which was highly correlated (r = 0.841) with the rate of testosterone 6 beta-hydroxylation. Antibody against rat P450 IIIA1 inhibited the high rate of dt2 formation by rat liver microsomes and the low rate catalyzed by mouse, guinea pig, dog, monkey, and human liver microsomes. In contrast, anti-P450 IIIA1 did not inhibit the 12-, 16-, or 17-hydroxylation of digitoxin (or the formation of the unknown metabolite), despite the fact that anti-P450 IIIA1 strongly inhibited (greater than 70%) the 6 beta-hydroxylation of testosterone by liver microsomes from each of the species examined (except rabbit liver microsomes, which were inhibited only approximately 30%).(ABSTRACT TRUNCATED AT 400 WORDS)

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 5
1 Nov 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin.

D C Eberhart, B Gemzik, M R Halvorson and A Parkinson
Molecular Pharmacology November 1, 1991, 40 (5) 859-867;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin.

D C Eberhart, B Gemzik, M R Halvorson and A Parkinson
Molecular Pharmacology November 1, 1991, 40 (5) 859-867;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics