Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced glucose metabolism in MCF-7 human breast cancer cells: 13C nuclear magnetic resonance spectroscopy studies.

T R Narasimhan, S Safe, H J Williams and A I Scott
Molecular Pharmacology December 1991, 40 (6) 1029-1035;
T R Narasimhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Safe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H J Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A I Scott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effects of 17 beta-estradiol, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and their combination on the metabolism of [1-13C] glucose were determined in cell suspensions of wild-type MCF-7 human breast cancer cells, by 13C NMR spectroscopy. Preliminary studies showed that, during the 7-hr duration of the NMR experiment, the cells maintained their viability and their aryl hydrocarbon responsiveness. Lactate was the major glucose metabolite detected in these studies, and the rate of lactate formation in the untreated (control) and 17 beta-estradiol (10(-9) M)-treated cells was 60 and 86 fmol/cell/hr, respectively; this represented a 40% increase in lactate formation in the cells treated with 17 beta-estradiol; comparable results were observed for the percentage of glucose converted into lactate. In contrast, TCDD (10(-9) M) did not significantly alter the rate of glucose metabolism or lactate formation. Co-treatment of the cells with 17 beta-estradiol (10(-9) M) plus TCDD (10(-8) to 10(-10) M) showed that TCDD completely inhibited the 17 beta-estradiol-induced metabolism of [13C] glucose to lactate in MCF-7 cells. In contrast, 2,8-dichlorodibenzo-p-dioxin (10(-8) M), a weak aryl hydrocarbon receptor agonist, did not inhibit estrogen-induced glucose-to-lactate metabolism in MCF-7 cells. In addition, it was shown that TCDD caused a significant decrease in 17 beta-estradiol-induced lactate formation within 1 hr after treatment, whereas the induction of monooxygenase activity was not observed until 3 hr after exposure of the cells to TCDD. These data indicate that TCDD-induced 17 beta-estradiol metabolism is not related to the decrease in the rate of conversion of glucose to lactate. These results further define the antiestrogenic responses elicited by TCDD and show that 13C NMR spectroscopy provides a unique method for measuring, in real time, the effects of TCDD on specific metabolic pathways.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 6
1 Dec 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced glucose metabolism in MCF-7 human breast cancer cells: 13C nuclear magnetic resonance spectroscopy studies.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced glucose metabolism in MCF-7 human breast cancer cells: 13C nuclear magnetic resonance spectroscopy studies.

T R Narasimhan, S Safe, H J Williams and A I Scott
Molecular Pharmacology December 1, 1991, 40 (6) 1029-1035;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on 17 beta-estradiol-induced glucose metabolism in MCF-7 human breast cancer cells: 13C nuclear magnetic resonance spectroscopy studies.

T R Narasimhan, S Safe, H J Williams and A I Scott
Molecular Pharmacology December 1, 1991, 40 (6) 1029-1035;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics