Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Theoretical studies on the histamine H2 receptor: construction of a receptor model based on the structural properties of dimaprit and N alpha-guanylhistamine.

L Pardo, J Giraldo, M Martín and M Campillo
Molecular Pharmacology December 1991, 40 (6) 980-987;
L Pardo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Giraldo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Martín
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Campillo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A histamine H2 receptor model was constructed based on the receptor sites previously proposed by Weinstein et al. [Mol. Pharmacol. 29:28-33 (1986)]. In this model, a glutamate or aspartate residue, simulated by a formate anion, is proposed both as the negative site at which the histamine cation is anchored to the receptor and as a proton-acceptor site. A proton-donor site, simulated by an ammonium cation, is proposed to model either a lysine, arginine, or histidine residue. The simulation of the activation mechanism of the histamine H2 receptor, inside the proposed receptor model, includes structure optimizations of stationary points and transition states with a split valence basis set. The proton movement from the proton donor site to the proton acceptor site, mediated by the imidazole ring of histamine, was found to be sequential in the potential energy surface. Results of the calculations reveal that both proton transfers are feasible from an energetical point of view. However, the proton movement from N(3) to the proton acceptor site has a higher energy of activation and, therefore, will be the rate-limiting step in the starting process that triggers the cascade of events that finally leads to a biological response. This model also provides a basis for explaining the molecular determinants of the pharmacological activity of N alpha-guanylhistamine. The structural properties of the guanidinium group allow N alpha-guanylhistamine to interact with the proposed receptor in two different modes. The proton-relay process, proposed as the trigger of the activation of the histamine H2 receptor, is likely to occur in only one of these binding modes. In the other case, N alpha-guanylhistamine acts as an antagonist because the barrier to proton transfer in this mode is too high. The partial agonism of N alpha-guanylhistamine is related to the ability of the drug to bind with the receptor in two different modes with similar affinity. An energetic analysis of the interaction between of ligand and the receptor model, including the energies of ligand desolvation, shows that histamine can compete with N alpha-guanylhistamine for the binding to the H2 receptor.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 40, Issue 6
1 Dec 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Theoretical studies on the histamine H2 receptor: construction of a receptor model based on the structural properties of dimaprit and N alpha-guanylhistamine.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Theoretical studies on the histamine H2 receptor: construction of a receptor model based on the structural properties of dimaprit and N alpha-guanylhistamine.

L Pardo, J Giraldo, M Martín and M Campillo
Molecular Pharmacology December 1, 1991, 40 (6) 980-987;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Theoretical studies on the histamine H2 receptor: construction of a receptor model based on the structural properties of dimaprit and N alpha-guanylhistamine.

L Pardo, J Giraldo, M Martín and M Campillo
Molecular Pharmacology December 1, 1991, 40 (6) 980-987;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics