Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates.

N E Ward and C A O'Brian
Molecular Pharmacology February 1992, 41 (2) 387-392;
N E Ward
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C A O'Brian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The indole carbazole staurosporine is an extraordinarily potent antiproliferative agent that inhibits the growth of cultured mammalian cells at concentrations of less than 1 nM. The antiproliferative activity of staurosporine is attributed to its potent inhibition of diverse protein kinases, but the mechanism of staurosporine inhibition has not been elucidated for any protein kinase. Protein kinase C (PKC) is a family of Ca(2+)- and phosphatidylserine-dependent protein kinases that are activated in vivo by the second messenger diacylglycerol. A fully active, Ca(2+)- and phosphatidylserine-independent, catalytic fragment of PKC that contains only the catalytic domain of the enzyme can be produced by limited proteolysis. Previous studies indicated that staurosporine inhibits PKC by binding its catalytic domain. In this study, we define the kinetics of inhibition by staurosporine of a catalytic fragment of rat brain PKC-gamma and of a catalytic fragment generated from a rat brain PKC-alpha/PKC-beta mixture. Our kinetic results provide evidence that staurosporine inhibits PKC by binding to a site of the catalytic domain other than the ATP substrate and protein substrate binding sites. Staurosporine inhibition appears to entail binding at a conserved site in the catalytic domain of PKC, because staurosporine inhibited rat brain PKC-alpha, PKC-beta, and PKC-gamma, as well as the catalytic fragments of PKC-beta and PKC-gamma, with similar protencies. The kinetics of inhibition of the catalytic fragment of PKC-gamma were uncompetitive with respect to histone III-S, providing evidence that the binding of histone III-S at the active site of the catalytic fragment precedes the binding of staurosporine to the enzyme. Taken in the context of previous mechanistic studies of PKC-catalyzed histone III-S phosphorylation, these results provide evidence that staurosporine binds to a complex of PKC, MgATP, and histone III-S, thereby forming a complex that cannot break down to products. In addition, the inhibitory kinetics observed when the ATP concentration was varied provided evidence that staurosporine reduces the affinity of MgATP for the catalytic fragment of PKC-gamma. Thus, the kinetics of inhibition of the catalytic fragment of PKC-gamma by staurosporine provide evidence that staurosporine inhibits PKC by a mixed mechanism.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 2
1 Feb 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates.

N E Ward and C A O'Brian
Molecular Pharmacology February 1, 1992, 41 (2) 387-392;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Kinetic analysis of protein kinase C inhibition by staurosporine: evidence that inhibition entails inhibitor binding at a conserved region of the catalytic domain but not competition with substrates.

N E Ward and C A O'Brian
Molecular Pharmacology February 1, 1992, 41 (2) 387-392;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics