Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event.

L D Khac, A Mokhtari, M Renner and S Harbon
Molecular Pharmacology March 1992, 41 (3) 509-519;
L D Khac
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Mokhtari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Renner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Harbon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the guinea pig myometrium, carbachol, oxytocin, and fluoroaluminates stimulated the breakdown of phosphatidylinositol 4,5-bisphosphate, which was insensitive to pertussis toxin [Biochem. J. 255:705-713 (1988)]. We now demonstrate that an increased accumulation of inositol phosphates, with an early production of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], could also be obtained with K+ (30 mM) and the Ca2+ ionophore ionomycin. Removal of extracellular Ca2+ or addition of the Ca2+ channel antagonists nifedipine and verapamil almost totally abolished stimulations elicited by high K+ and partially attenuated receptor- and fluoroaluminate-mediated increases in inositol phosphates. Isoproterenol similarly attenuated the accumulation of inositol phosphates elicited by carbachol, oxytocin, and fluoroaluminates (maximal inhibition, 35%; EC50, 0.5 nM), with no change in the rate of Ins(1,4,5)P3, inositol bisphosphate, and inositol monophosphate generation. The beta-adrenergic receptor-induced inhibition was prevented by pertussis toxin and could not be reproduced by forskolin, indicating that cAMP was not involved. Experimental findings were, rather, consistent with a predominant role for Ca2+. Thus, inhibition due to isoproterenol was lost in a Ca(2+)-depleted medium and was not additive with that caused by nifedipine. Accumulation of inositol phosphates triggered by high K+ was insensitive to the beta-adrenergic receptor inhibition. The inhibitory effect of isoproterenol, similar to that of nifedipine, was counteracted by ionomycin and also by the Ca2+ channel agonist Bay K 8644. These data indicate that in the myometrium 1) phospholipase C can be activated through a voltage-gated Ca2+ entry-dependent process that contributes at least partially to the stimulations triggered by receptor- and/or guanine nucleotide-binding protein-mediated activation and 2) beta-adrenergic receptor activation is linked via a cAMP-independent, pertussis toxin-sensitive pathway to an inhibition of voltage-gated Ca2+ channels, resulting in an attenuation of the Ca(2+)-associated generation of inositol phosphates.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 3
1 Mar 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event.

L D Khac, A Mokhtari, M Renner and S Harbon
Molecular Pharmacology March 1, 1992, 41 (3) 509-519;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract

Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event.

L D Khac, A Mokhtari, M Renner and S Harbon
Molecular Pharmacology March 1, 1992, 41 (3) 509-519;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics