Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Arcaine blocks N-methyl-D-aspartate receptor responses by an open channel mechanism: whole-cell and single-channel recording studies in cultured hippocampal neurons.

S D Donevan, S M Jones and M A Rogawski
Molecular Pharmacology April 1992, 41 (4) 727-735;
S D Donevan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S M Jones
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M A Rogawski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Arcaine, a putative competitive antagonist at the polyamine site on the N-methyl-D-aspartate (NMDA) receptor complex, not only inhibits polyamine enhancement of NMDA-induced [3H]dizocilpine (MK-801) binding but also depresses binding in the absence of polyamines. In the present experiments, we investigated the mechanism of this latter effect in whole-cell and single-channel recordings from cultured rat hippocampal neurons. Arcaine produced a concentration-dependent block of NMDA-evoked inward currents (KD, 61 microM at -60 mV) but not those induced by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or gamma-aminobutyric acid. The arcaine block was strongly voltage dependent and was almost completely relieved at positive holding potentials. Analysis of the voltage dependence indicated that the arcaine acceptor site appeared to sense 67% of the transmembrane electric field. In support of an open channel blocking mechanism, arcaine, like Mg2+, prevented dizocilpine from blocking the NMDA receptor channel. Moreover, increasing the dizocilpine concentration partially overcame the arcaine effect, indicating a competitive interaction between arcaine and dizocilpine. Spermine, which in our preparation usually produced only an arcaine-like voltage-dependent block of NMDA currents at high concentrations (greater than 100 microM), had no effect on the block by arcaine at lower concentrations. In single-channel recordings, arcaine caused a concentration- and voltage-dependent decrease in apparent channel amplitude. Assuming a simple model of open channel block, we estimate the arcaine binding and unbinding rates as 4.4 x 10(8) M-1 sec-1 and 1.8 x 10(4) sec-1, respectively, which are comparable to the rates for open channel block by Zn2+ and substantially faster than those of Mg2+. These results indicate that arcaine inhibits NMDA-induced [3H]dizocilpine binding by blocking the open NMDA receptor channel, an action that is independent of the polyamine site.

MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 4
1 Apr 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Arcaine blocks N-methyl-D-aspartate receptor responses by an open channel mechanism: whole-cell and single-channel recording studies in cultured hippocampal neurons.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Arcaine blocks N-methyl-D-aspartate receptor responses by an open channel mechanism: whole-cell and single-channel recording studies in cultured hippocampal neurons.

S D Donevan, S M Jones and M A Rogawski
Molecular Pharmacology April 1, 1992, 41 (4) 727-735;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Arcaine blocks N-methyl-D-aspartate receptor responses by an open channel mechanism: whole-cell and single-channel recording studies in cultured hippocampal neurons.

S D Donevan, S M Jones and M A Rogawski
Molecular Pharmacology April 1, 1992, 41 (4) 727-735;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics