Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Molecular Pharmacology
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Molecular Pharmacology

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit molpharm on Facebook
  • Follow molpharm on Twitter
  • Follow molpharm on LinkedIn
Abstract

Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens.

T Shimada, C H Yun, H Yamazaki, J C Gautier, P H Beaune and F P Guengerich
Molecular Pharmacology May 1992, 41 (5) 856-864;
T Shimada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C H Yun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Yamazaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J C Gautier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P H Beaune
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F P Guengerich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rat and human lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic activities towards several xenobiotic chemicals, including procarcinogens, in different microsomal preparations. Rat lung microsomal P-450s were more active than the human P-450s in catalyzing most of the monooxygenation reactions. Human lung microsomal P-450 was solubilized and purified. Human lung microsomes contain approximately 10 pmol of P-450/mg of protein, on the basis of Fe2+.CO versus Fe2+ difference spectra of the eluates obtained from an octylamino-agarose column. The partially purified P-450 preparations from two human lung microsomal samples showed high activities for the conversion of both (+)- and (-)-isomers of 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene to genotoxic products. After DEAE-cellulose column chromatography, a partially purified P-450 fraction containing polypeptides of Mr 52,000 and 58,000 was obtained from the early fraction of the octylamino-agarose column eluate, and an electrophoretically homogeneous protein having a molecular weight of approximately 52,000 was recovered from a latter fraction. The amino-terminal amino acid sequences of the two peptides in the earlier fraction were determined; neither polypeptide appears to resemble any known P-450 protein. The protein from the latter octylamino-agarose fraction was immunoreactive with anti-rat P-450 1A2 and anti-human P-450 1A2 but not with antibodies raised against other P-450 enzymes or autoimmune antibodies that specifically recognize human P-450 1A2. A tryptic peptide was isolated from the preparation, and the amino acid sequence matched that of human P-450 1A1 perfectly (residues 31-48) but not that of human P-450 1A2. All of nine human lung microsomal samples examined contained proteins that were immunoreactive with rabbit anti-rat P-450 1A2 and catalyzed the activation of 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene. The activities could be inhibited by rabbit anti-rat P-450 1A2 and, to a lesser extent, by anti-rat P-450 1A1. The addition of 7,8-benzoflavone caused inhibition or stimulation, depending upon the particular human lung microsomal preparation. Thus, this work clearly shows that human lung microsomes contain at least two major P-450 enzymes; human P-450 1A1 is present in lungs and can actually catalyze the activation of environmental procarcinogens, including polycyclic aromatic hydrocarbons.

PreviousNext
Back to top

In this issue

Molecular Pharmacology
Vol. 41, Issue 5
1 May 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Molecular Pharmacology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens.
(Your Name) has forwarded a page to you from Molecular Pharmacology
(Your Name) thought you would be interested in this article in Molecular Pharmacology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract

Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens.

T Shimada, C H Yun, H Yamazaki, J C Gautier, P H Beaune and F P Guengerich
Molecular Pharmacology May 1, 1992, 41 (5) 856-864;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Abstract

Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens.

T Shimada, C H Yun, H Yamazaki, J C Gautier, P H Beaune and F P Guengerich
Molecular Pharmacology May 1, 1992, 41 (5) 856-864;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Molecular Pharmacology
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0111 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics